Enhancement of Critical Current Density of Ba, Ce-doped YBa₂Cu₃O_{7-δ} Thin Films Deposited by TFA-MOD Method

Jong-Bum Lee, Youn Kyung Kwon, Jung Hee Yu, Ji hyun Ahn, Byeong-Joo Kim, Hee-Gyoun Lee and Gye-Won Hong Department of Advanced Material Engineering, Korea Polytechnic University, Korea

The effect of Ba and Ce addition on the properties of $YBa_2Cu_3O_{7-6}(YBCO)$ thin film prepared on single crystal LAO substrate by a TFA-MOD method has been investigated. Precursor solution with cation ratios of Y:Ba:Cu=1:2:3 and Ba:Ce= 1:1 have been prepared in order to dope the BaCeO₃ in a stoichiometric solution. Coating solutions with the cation ratios of Y:Ba:Cu:Ce=1:2+x:3:x were prepared by mixing the separately prepared solutions. Coated films obtained by a dip coating were calcined at low temperature under a moisture-containing oxygen atmosphere. Superconducting YBCO films have been obtained by performing conversion heat treatment at temperature of $780^{\circ}C \sim 810^{\circ}C$ under a moisture-containing Ar (1,000 ppm oxygen) atmosphere. The critical current density showed highest value for the film prepared using a coating solution with 40% doping of BaCeO₃. SEM and XRD observations showed that BaCeO₃ particles were formed for the film doped with large amount of Ba and Ce.

Keywords: flux pinning, BaCeO₃, YBCO, metal organic deposition

Acknowledgement

This study was partly supported by the grant from Energy and Electric Power Education Center program and funded by Ministry of Commerce, Industry and Energy(MOCIE), Republic of Korea.