• 제목/요약/키워드: BPNN recognition

검색결과 12건 처리시간 0.017초

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교 (Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

The Neural-Network Approach to Recognize Defect Pattern in LED Manufacturing

  • Chen, Wen-Chin;Tsai, Chih-Hung;Hsu, Shou-Wen
    • International Journal of Quality Innovation
    • /
    • 제7권3호
    • /
    • pp.58-69
    • /
    • 2006
  • This paper presents neural network-based recognition system for automatic light emitting diode (LED) inspection. The back-propagation neural network (BPNN) is proposed and tested. The current-voltage (I-V) characteristic data of LED from the inspection process is used for the network training and testing. This study selects 300 random samples as network training and employs 100 samples as network testing. The experimental results show that if the classification work is done well, the accuracy of recognition is 100%, and the testing speed of the proposed recognition system is almost one half faster than the traditional inspection system does. The proposed neural-network approach is successfully demonstrated by real data sets and can be effectively developed as a recognition system for a practical application purpose.

시스템잡음에 강건한 SOM-TVC 기법을 이용한 근전도 패턴 인식에 관한 연구 (A Study on the EMG Pattern Recognition Using SOM-TVC Method Robust to System Noise)

  • 김인수;이진;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.417-422
    • /
    • 2005
  • This paper presents an EMG pattern classification method to identify motion commands for the control of the artificial arm by SOM-TVC(self organizing map - tracking Voronoi cell) based on neural network with a feature parameter. The eigenvalue is extracted as a feature parameter from the EMG signals and Voronoi cells is used to define each pattern boundary in the pattern recognition space. And a TVC algorithm is designed to track the movement of the Voronoi cell varying as the condition of additive noise. Results are presented to support the efficiency of the proposed SOM-TVC algorithm for EMG pattern recognition and compared with the conventional EDM and BPNN methods.

용접결함 패턴인식을 위한 신경망 알고리즘 적용 (Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws)

  • 김창현;유홍연;홍성훈
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.65-72
    • /
    • 2007
  • 본 연구에서는 초음파 검사를 기반으로 하는 비파괴검사 방법을 사용하였으며, 용접결함의 패턴인식 알고리즘으로서 역전파 신경망과 확률 신경망을 비교하였다. 이러한 목적을 위한 과정에서 두 가지 알고리즘에 동일한 변수를 적용하였으며, 여기서 사용된 특징변수는 용접결함으로부터 반사된 시간영역 상의 전체 결함신호로부터 결함부분만을 분리한 신호파형을 사용하였다. 이상의 절차를 통하여 두 가지 알고리즘의 적용방안을 확인하였으며, 두 가지 알고리즘에 대하여 각각의 장단점을 비교하였다.

용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교 (The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws)

  • 윤성운;김창현;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별 (Multiaspect-based Active Sonar Target Classification Using Deep Belief Network)

  • 김동욱;배건성;석종원
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.418-424
    • /
    • 2018
  • 수중 표적 탐지 및 식별은 군사 및 비군사적으로 중요한 문제이다. 최근 패턴인식 분야에서 딥러닝 기술이 발전되면서 많은 성능개선 결과가 발표되고 있다. 그중 DBN(Deep Belief Network)기법은 DNN(Deep Neural Network)을 사전 훈련하는데 사용되어 좋은 성능을 보여주고 있다. 본 논문에서는 능동 소나를 이용한 수중 표적의 식별 문제에 DBN을 사용하여 실험을 진행하고, 그 결과를 비교하였다. 표적신호는 3차원 하이라이트 모델을 사용하여 합성된 능동 소나 신호를 사용하였고, 특징추출 방법으로는 FrFT(Fractional Fourier Transform) 기반의 특징추출을 사용하였다. 단일 센서, 즉, 단일 방위 데이터 기반의 실험에서 DBN을 이용한 식별 결과는 기존의 BPNN(Back Propagation Neural Network)에 비해 약 3.83 % 향상되었다. 또한, 다중 방위 기반의 식별 실험에서는 관측열의 개수가 3을 초과하면 95% 이상의 성능을 얻을 수 있었다.

웨이블렛과 신경망을 이용한 플라즈마-유도 X-Ray Photoelectron Spectroscopy 고장 패턴의 인식 (Recognition of Plasma- Induced X-Ray Photoelectron Spectroscopy Fault Pattern Using Wavelet and Neural Network)

  • 김수연;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.135-137
    • /
    • 2006
  • To improve device yield and throughput, faults in plasma processing equipment should be quickly and accurately diagnosed. Despite many useful information of ex-situ sensor measurements, their applications to recognize plasma faultshave not been investigated. In this study, a new technique to identify fault causes by recognizing X-ray photoelectron spectroscopy (XPS) using neural network and continuous wavelet transformation (CWT). The presented technique was evaluated with the plasma etch data. A totalof 17 experiments were conducted for model construction. Model performance was investigated from the perspectives of training error, testing error, and recognition accuracy with respect to various thresholds. CWT-based BPNN models demonstrated a higher prediction accuracy of about 26%. Their advantages over pure XPS-based models were conspicuous in all three measures at small networks.

  • PDF

기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교 (Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration)

  • 최용훈;김민영;수잔 오샤네시;전종길;김영진;송원정
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.43-54
    • /
    • 2018
  • The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.