References
- Bhatikar, S. R. and Mahajan, R. L.(2002). Artificial neural-network-based diagnosis of CVD barrel reactor. IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No.1, pp. 71-78 https://doi.org/10.1109/66.983446
- Chen, F. L. and Liu, S. F.(2000). A neural-network approach to recognize defect spatial pattern in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing, Vol. 13, No.3, pp. 366-373 https://doi.org/10.1109/66.857947
- Chen, F. L., Liu, S. F., Doong, Y. Y. and Young, K. L.(2003). LOGlC product yield analysis by Wafer Bin Map pattern recognition supervised neural network. IEEE International Symposium on Semiconductor Manufacturing, No.1, pp. 501-504
- Chen, W. C., Chen, C. T., Ho, T. H., Chen, J. H. and Sheu, L. J.(2005). Use of neural network in pattern recognition of semiconductor etching process. The Proceedings of the 11th International Conference on Industrial Engineering and Engineering Management, No. 1, pp. 719-725
- Cheng, C. S. and Tseng, C. A.(1995). Neural network in detecting the change of process mean value and variance. Journal of the Chinese Institute of Industrial Engineers, Vol. 12 No.3, pp. 215-223
- Fogel, D. B.(1991). An information criterion for optimal neural network selection. IEEE Transactions on Neural Networks, Vol. 2, No.5, pp. 490-497 https://doi.org/10.1109/72.134286
- Hush, D. R. and Home, B. G.(1993). Progress in supervised neural networks. IEEE Signal Processing Magazine, Vol. 10, No.1, pp. 8-39
- Lee, J. H., You, S. J. and Park, S. C.(2001). A new intelligent SOFM-based sampling plan for advanced process control. Expert Systems with Applications, No. 20, pp. 133-151 https://doi.org/10.1016/S0957-4174(00)00054-3
- Mehrotra, K., Mohan, C. K., et Ranka and Sanjay, R.(2000). Elements of artificial neural networks. MIT Press: Cambridge, Massachusetts
- Murata, N., Yoshizawa, S. and Amari, S.(1994). Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks, Vol. 5, No.6, pp. 865-872 https://doi.org/10.1109/72.329683
- Obaidat, M. S., Khalid, H. and Sadoun, B.(1998). Ultrasonic transducer characterization by neural networks. Journal of Information Sciences, No. 107, pp. 195-215
- Onoda, T.(1995). Neural network information criterion for optimal number of hidden units. Proceedings of the IEEE International Conference on Neural Networks, No.1, pp. 270-280
- Palma, F. Di., Nicolao, G. De., Miraglia, G., Pasquinetti, E. and Piccinini, F.(2005). Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing. Pattern Recognition Letters, No. 26, pp. 1857-1865
- Sharma, V., Jha, R. and Naresh, R.(2005). An augmented Lagrange programming optimization neural network for short-term hydroelectric generation scheduling. Engineering Optimization, Vol. 37, No.5, pp. 479-497 https://doi.org/10.1080/03052150500068170
- Su, C. T., Yang, T. and Ke, C. M.(2002). A neural-network approach for semiconductor wafer post-sawing inspection. IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No.2, pp. 260-266 https://doi.org/10.1109/66.999602
- Zoroofi, R. A., Taketani, H., Tamura, S., Sato, Y. and Sekiya, K.(2001). Automated inspection of lC wafer contamination. Pattern Recognition, No. 34, pp. 1307-1317