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Comparison of Artificial Neural Network and Empirical Models to 
Determine Daily Reference Evapotranspiration
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Abstract

The accurate estimation of reference crop evapotranspiration (ETo) is essential in irrigation water management to assess the time-dependent status of 

crop water use and irrigation scheduling. The importance of ETo has resulted in many direct and indirect methods to approximate its value and include 

pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) 

have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern 

recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized 

regression neural network (GRNN), to evaluate their capability to accurately predict ETo using daily meteorological data. All data were obtained from 

two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. 

Daily ETo was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of ETo and corresponding 

meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against ETo 

calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed 

best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and 

policy makers for effective agricultural water governance.

Keywords: Reference evapotranspiration; penman-monteith equation; artificial neural networks (ANNs); backpropagation neural network (BPNN); 

generalized-regression neural network (GRNN); multiple linear regression (MLR)

I. INTRODUCTION

Reference evapotranspiration (ETo) is one of the components 

of the hydrologic cycle. Its precise estimation is critical to 

various agricultural and water management applications such as 

estimation of crop water requirements, irrigation scheduling, 

crop yield prediction, rainfall, runoff modeling, water resources 

planning and management, and water balance calculations 

(Allen et al., 1994; Kumar et al., 2002). Because of its 

significance, methods have been employed to measure ETo 

directly using lysimeters and pan evaporimeters, but they are 

time-consuming, require precise experimental setup and hours 

of maintenance to achieve reliable results (Igbadum et al., 

2006). Micrometeorological methods using eddy covariance and 

scintillometry have also been employed to measure actual 

evapotranspiration, but they are expensive, complex and have 

limited applicability (Liu and Xu, 2017). Therefore, many 

studies have investigated indirect methods to estimate ETo and 

from these formulated equations using observed weather data 

as inputs. Examples of radiation-based methods include the Turc 

model, the Markkink, Jensen-Haise, Doorenbos and Pruitt, 

McGuinness and Bordne, Abtew, and Priestley-Taylor 
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equations. Temperature-based methods include the Hargreaves, 

Thornthwaite, Romanenko, Hamon, Kharrufa, Linacre, and the 

Blaney-Criddle equations (Xu and Singh, 2000; Lang et al., 

2017). Among the many numerical methods, the 

Penman-Monteith method (named here FAO56-PM) is the sole 

standard method recommended by the Food and Agricultural 

Organization (FAO) of the United Nations because it closely 

approximates ETo at the locations evaluated (Allen et al., 1994; 

ASCE 2000). 

The FAO56-PM equation accounts for aerodynamic as well 

as physiological parameters and requires large data input for 

estimating ETo, including geologic variables such as elevation 

and latitude, and meteorological variables such as minimum air 

temperature (Tmin), average air temperature (Tavg), maximum air 

temperature (Tmax), wind speed, relative humidity (RH) and 

sunshine hour. The high data demand of the FAO56-PM method 

provides for very accurate estimates but restricts its application 

in some data-lacking regions (Traore et al., 2008). 

Over the past two decades, Artificial Neural Networks 

(ANNs) have been used extensively because of their ability to 

map input-output relationships without any understanding of 

physical processes and, therefore, can solve problems that are 

not amenable to conventional statistical or mathematical 

methods (Aytek et al., 2009). They are capable of learning and 

generalizing from examples to produce meaningful solutions to 

problems, even when input data contain errors or are 

incomplete. ANNS can also find adaptive solutions over time 

to compensate for changing circumstances, and process 

information rapidly (Jain et al., 2008; Rudd et al., 2014). Due 

to their capability of mapping non-linear relationships under any 

complex circumstance, ANNs have been widely used in diverse 

fields including hydrological modeling (Singh, 1988; Dawson 

and Wilby, 1998; Kim et al., 2008), streamflow prediction 

(Sahoo and Ray, 2006), suspended sediment modeling (Kişi, 

2005), evapotranspiration modeling (Kumar et al., 2002), 

system dynamics (Azadeh et al., 2013), fault diagnosis and 

control (Koivo, 1994), pattern recognition (Basu et al., 2010), 

and financial forecasting (Kaastra and Boyd, 1996). 

Despite many ANN applications, there are only a few studies 

that report on its use to predict ETo. Landeras et al. (2008) 

compared ANNs with ETo approximated by the FAO56-PM 

method for various locations in Spain. Seven ANNs with 

different input combinations were used and compared with ten 

empirical and semi-empirical ETo calculations. This study 

showed that ANNs performed better than the locally calibrated 

ETo equations, so ANNs could be recommended in most 

situations if there is a deficiency in some of the meteorological 

sensors typically used in the FAO56-PM equation, such as solar 

radiation, vapor pressure, wind speed and relative humidity data 

(FAO, 1998). Antonopoulos et al. (2017) compared ETo 

estimations derived from ANNs and compared the values with 

the Priestly-Taylor, Makkink, and Hargreaves methods for one 

location in Greece. The data set of four variables, temperature, 

solar radiation, wind speed and relative humidity, was for a 

four-year period. They reported that the Priestley-Taylor and 

Makkink methods correlated well with the ANN model 

(correlation coefficients ranged from 0.955 to 0.986). However, 

the Hargreaves method over-estimated higher values of ETo. 

The RMSE from their investigations compared with the 

historical ETo calculations were rather larger and demonstrated 

that the model estimated ETo with the RMSE ranging from 

0.574 to 1.33 mm/day. Importantly, Landeras et al. (2008) 

reports that the optimal ANN architecture varied by location. 

According to the previous studies, the major problem when 

dealing with estimating evapotranspiration process is its 

complex and nonlinear dynamic, which means that it is 

favorable if there is sufficiently enough data available. 

However, the situations are not always in that way. Therefore, 

this study was initiated to develop ANN model to accurately 

predict ETo and further utilize for irrigation scheduling even 

though there are limited and/or less available data. To cope with 

this, as the first step, this study assessed the performance of 

ANN using rich data accessible from automated weather stations 

operated by the Korea Meteorological Administration; 

investigated the accuracy of ANN algorithms compared with 

the empirical model (Multiple Linear Regression); and 

determined the benefit or disadvantage of ANN models with 

two different computational algorithms in estimating ETo.

II. MATERIALS AND METHODS

1. Data collection and ETo calculation

Six daily meteorological data, average air temperature (Tavg, 

°C), minimum and maximum air temperature (Tmin and Tmax, 

°C), relative humidity (RH, %), wind speed (WS, m/s) and 

sunshine hour (SH, hr), were obtained from the Chupungryeong 

weather station, Yeongdong-gun, Gyeongbuk-province (Lat. 36
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˚25’N, Long. 128˚09’E, 96.2 m above sea level) and the 

Jangsu weather station, Jangsu-gun, Jeonbuk-province (Lat. 35˚

39’N, Long. 127˚31’E, 406.5 m above sea level). The data from 

two weather stations covered 2002 to 2017 (15 years) and 1988 

to 2017 (30 years), respectively.

Figure 1 illustrates the distribution of multi-year mean data 

for Tavg, Tmin, Tmax, RH, WS, and SH. In Yeongdong, annual 

mean temperature, wind speed, relative humidity and sunshine 

hour were 12.7 oC (-15.8∼ 37.2 oC), 1.7 m/s (maximum of 

7.2 m/s), 64.6% (17.5∼100%), and 6.0 hr (maximum of 13.6 

hr), respectively. Annual mean temperature, wind speed, relative 

humidity and sunshine hour in Jangsu were 10.7 oC (-25.8∼

34.7 oC), 1.7 m/s (maximum of 7.6 m/s), 73.9% (30.4∼100%), 

and 5.8 hr (maximum of 12.9 hr), respectively. The annual mean 

rainfall in Yeongdong and Jangsu were 1,151 mm and 1,457 

mm, respectively, which were 200 mm and 100 mm less than 

the mean annual rainfall across the country.

In this study, ETo calculated with the FAO56-PM (equation 

1) was used as the benchmark output value. The characteristics 

of a hypothetical reference crop (height = 0.12 m, surface 

resistance = 70 s/m, and albedo = 0.23) were adopted. 

    (1)

where, ETo is the daily reference crop evapotranspiration 

(mm/day), Rn is the net radiation (MJ/m2⋅day), u2 is the mean 

wind speed at 2 m above soil surface (m/s), T is the mean air 

temperature (°C), G is the soil heat flux density at the soil 

surface (MJ/m2⋅day), eα is the saturation vapor pressure (kPa), 

ed is the actual vapor pressure (kPa), Δ is the slope of the 

saturation vapor pressure-temperature curve (kPa/°C), γ is the 

psychrometric constant (kPa/°C).

Sunshine hour, which is generally provided from two 

automated weather stations in the Korea Meteorological 

Administration, was converted to net solar radiation (SR) using 

the Angstrom-Prescott equation (2) (de Medeiros et al., 2017) 

in order to use the Penman-Monteith equation. The coefficients 

a (0.25) and b (0.5) for the Angstrom-Prescott equation, which 

are dependent on the physical characteristics of the atmospheric 

layer and influenced by local latitude, altitude and seasonal 

variability (e.g., rainfall, wind speed, relative humidity), were 

adopted (FAO, 1998) 

              (2)

where, H is daily global radiation on a horizontal surface 

(MJ/m2⋅day), Ho is daily extraterrestrial radiation on a 

horizontal surface (MJ/m2⋅day), n is the daily number of hours 

of bright sunshine, and N is daily maximum number of hours 

of sunshine hour.

Reference crop evapotranspiration is the potential amount of 

water used by a crop, while actual evapotranspiration (ETc) of 

a well-watered crop is estimated by multiplying ETo by a crop 

coefficient (Kc). Crop coefficients are crop and region specific. 
Fig. 1 Multi-year daily climate characteristics of study area 

(a: Yeongdong, b: Jangsu)
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They vary according to the growth stage of the crop and are 

determined under standard growing conditions, which is involve 

disease-free, well-fertilized and well-watered management 

(Allen et al., 1998). A detailed explanation of the theory of 

ETo is presented by Allen and FAO (1998). 

In this study, daily values of Tavg, Tmax, Tmin, RH, WS and 

SR were used to compute ETo using the FAO56-PM equation 

which was coded into an Excel Spreadsheet. Daily results from 

the ANN and MLR models were compared against these 

approximated ETo values.

2. Multiple Linear Regression Analysis (MLR)

Multiple linear regression techniques can be used to model 

evapotranspiration in terms of the local climatological 

parameters. The general purpose of the MLR model is to learn 

more about the relationship between several independent or 

predictor variables and a dependent or criterion variable. The 

general form of the regression equation is as follows (Kahane, 

2008):

     (3)

where, y: dependent variable, xi (i=1, 2, …, k): ith independent 

variables, bi: ith coefficient corresponding to xi, b0: intercept 

and k: number of observations.

In the multiple linear regression analysis, the values of ETo 

were used as the dependent variable and Tmin, Tmax, Tavg, RH, 

WS and SH were used as independent variables to derive the 

coefficients in the multiple linear regression model.

3. Artificial Neural Network Models: 

Backpropagation neural network (BPNN) and 

Generalized regression neural network (GRNN)

Artificial Neural Networks (ANNs) have universal 

approximation capabilities, which enable them to solve given 

differential equations possessing unsupervised error. 

Backpropagation and Generalized Regression Neural Network 

models, two well-known feed-forward neural network 

techniques, were evaluated in this study.

The multilayer perceptron (MLP) is the most common, 

effective and successful neural network architecture which uses 

a supervised learning technique called Backpropagation (BP) 

algorithm. Backpropagation neural network (BPNN) performs 

parallel training for improving the efficiency of MLP networks, 

derives the network error which is fed back into the network 

model and used to adjust the weights (Kecman, 2001; Mia et 

al., 2015). Adjustable weights are used to connect the nodes 

between adjacent layers and optimized by the training algorithm 

to obtain the desired results. Through that process, the error 

in prediction decreases with each iteration and succeeds when 

the neural network model reaches the specified level of 

accuracy, producing the desired outputs (Kim et al., 2008). A 

three-layer learning network used in this study consists of an 

input layer, one hidden layer and an output layer (Fig. 2). 

To achieve the best performance model, the governing factors 

in BPNN, such as the number of hidden layers, the number 

of hidden processing elements (PEs), the transfer function (e.g., 

sigmoid, tan-sigmoid), learning algorithms (e.g., Delta, extended 

DBD), and learning parameters (e.g., learning rate, momentum 

factor, initial weights), were evaluated. Depending on the 

problem being solved, the success of training varies with 

selected factors. A trial-and-error procedure is normally 

preferred. Detailed information about each parameter 

(definition, function, range, etc.) is provided in Basheer and 

Hajmeer (2000) and Maier and Dandy (2000).

The generalized regression neural network (GRNN), is 

categorically a probabilistic neural network (PNN) model, 

which contains a neural network architecture that can solve any 

function approximation problem if sufficient data are made 

available. The main function of a GRNN is to estimate a linear 

or nonlinear regression surface on independent variables, i.e., 

the network computes the most probable value of an output y 

given only training x (Specht, 1991), where y is output and x 

is input.

Figure 2 is a schematic of the GRNN architecture with four 

layers: an input layer, a hidden layer (pattern layer), a 

summation layer, and an output layer which are connected in 

sequence. In the pattern layer, each neuron presents a training 

pattern and its output. In the summation layer there are two 

different parts, a single division unit and a summation unit. This 

layer performs a normalization of the output set along with the 

output layer. In training the network, radial basis and linear 

activation functions are used in hidden and output layers. Each 

pattern layer unit is connected to the two neurons in the 

summation layer, S and D. The S summation neuron computes 

the sum of the weighted response of the pattern layer, while 
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the D summation neuron is used to calculate un-weighted 

outputs of pattern neurons. The output layer merely divides the 

output of each S-summation neuron by that of each 

D-summation neuron, yielding the predicted value y(x) to an 

unknown input vector x as; 

        (4)

         (5)

The distance, Di, between the training sample and the point 

of prediction, is used as a measure of how well each training 

sample can represent the position of the prediction, x. The 

smoothing factor   is a very important parameter of GRNN. 

When a smoothing factor approaches 1, the network’s ability 

to generalize will be increased and the error of prediction 

degraded. In contrast, when a smoothing factor approaches 0, 

it degrades the network’s ability to generalize, or make 

predictions at all (Specht, 1991). Therefore, the optimum 

smoothing factor for the GRNN model should be determined 

empirically (Kim et al., 2011). More details on GRNN and its 

computational parameters are provided in Specht (1991).

4. Data processing and ANN computational 

procedures

In ANN computation, careful consideration should be given 

to choose suitable data that adequately represent the 

characteristics critical to the physical processes because 

networks trained with such data achieve higher generalization 

capability. To accomplish this, the total of 5,830 and 10,944 

data points for Yeongdong and Jangsu were divided into three 

subsets: a training set (62%), a validation set (8%) and a test 

set (30%). 

Daily meteorological data, Tavg, Tmax, Tmin, RH, WS and SH, 

were selected as inputs and corresponding ETo values derived 

using the FAO56-PM method were used as output (desired) 

data. Because the input and output data consisted of different 

parameters with various physical meanings, units, and ranges, 

it was necessary to ensure that all variables receive equal 

attention during the training process. Therefore the data were 

normalized within the range from 0 to 1 using the following 

Min-Max normalization method: 

            (6)

where, Ynorm = the normalized dimensionless data of the specific 

input node; Yi = the measured/estimated data of the specific 

input node; Ymin = the minimum data of the specific input node; 

and Ymax = the maximum data of the specific input node.

A PC-based neural network application software, 

NeuralWorks Professional II/Plus (Neuralworks®, Pennsylvania, 

USA) used in this study, allows the user to adjust key network 

and training parameters in BPNN and GRNN. For example, the 

number of hidden layers, Processing elements (PEs) in the 

hidden layer, the momentum value, the learning rule (variation 

of BP), the normalization technique, and the transfer function 

in BPNN and the number of patterns, the reset factor, the radius 

of influence, the sigma scale, and the sigma exponent in GRNN 

Fig. 2 Schematic structure of BPNN (left) and GRNN (right) architectures (modified from Kim et al. (2011))



Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration

48 • Journal of the Korean Society of Agricultural Engineers, 60(6), 2018. 11

can be adjusted. Modifications are performed to determine the 

best combination for solving the particular problem. Given the 

number of possible parameter combinations, the possibility of 

finding the correct combination of parameter settings, given a 

random starting point, is unlikely and is based primarily on 

chance (Kim et al., 2008).

Model convergence was based on the error function and 

exhibited any deviation between the predictions taken from 

corresponding target output values as the sum of the squares 

of the deviations. Training proceeded until the error was reduced 

to a desired minimum and the most commonly used stopping 

criterion our neural network training was the 

sum-of-squared-error (SSE), calculated for the training or test 

subsets as:

      (7)

where, Api and Tpi are the actual and target solutions of the ith 

output node on the pth example, N is the number of training 

examples, and M is the number of output nodes (Basheer and 

Hajmeer, 2000).

5. Performance evaluation criteria

The performance of the BPNN, GRNN and MLR models 

were evaluated by comparing their predictive accuracies with 

the benchmark ETo values. The performance was characterized 

based on the following statistical criteria; R (correlation 

coefficient), R2 (coefficient of determination), RMSE (root 

mean square error), E (Nash-Sutcliffe efficiency) and MAE 

(mean absolute error). The coefficient of determination (R2) and 

the residual mean square or root mean square error (RMSE) 

explain the proportion of variance and the residual variance 

between the ETo values estimated by FAO56-PM and ANN 

(MLR) models. Values of R2 vary between 0 and 1, with higher 

values indicating less variance, and the values greater than 0.5 

typically considered acceptable (Nash and Sutcliffe, 1970). The 

mean absolute error (MAE), as a measure of accuracy, takes 

the absolute value of the difference between ETo values. Model 

efficiency (E) is defined as one minus the sum of absolute 

squared differences between simulated and measured values, 

normalized by the variance of measured values during the 

period under investigation. The range of E lies between -∞ and 

1.0 (perfect fit). An efficiency value between 0 and 1 is 

generally viewed as an acceptable level of performance (Nash 

and Sutcliffe, 1970). Efficiency lower than zero indicates that 

the mean value of the observed time series would be a better 

predictor than the model and denotes unacceptable performance 

(Moriasi, et al., 2007).

  (8)

 (9)

  (10)

  (11)

  (12)

where,  and  represent the FAO56-PM estimate and its 

average for ith value;  and  represent the ANNs (MLR) 

computed value and its average for ith value; N represents the 

number of data considered. 

III. RESULTS AND DISCUSSION

1. Reference evapotranspiration

In the present investigation, daily observation of Tmax, Tmin, 

Tavg, RH, WS and SR (derived from SH) were used to estimate 

ETo. The temporal trend of ETo showed that ETo in Yeongdong 

was approximately 1.3 times greater compared with ETo in 

Jangsu until July, and then after November. However, during 

August through October, ETo data were somewhat similar in 

both locations. An increase in rainfall and a decrease in SH 

resulted in a sudden drop in ETo during early July (Fig. 3).

The correlation between the six meteorological parameters 

used in this study with ETo are presented in Table 1. In 

Yeongdong, Tmax and Tavg had high correlations with ETo 

followed by SH, Tmin, RH and WS, but the correlation among 
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Tmax, Tavg and SH were not significantly different. Similarly, 

in Jangsu, Tmax and Tavg had high correlation with ETo. 

However, for the remaining parameters, the order of correlation 

(from highest to lowest) to ETo was Tmin, SH, RH and WS.

Table 1 indicated that RH consistently showed a negative 

correlation with ETo. On the contrary, Tavg, Tmin, Tmax, and SH 

had strong positive correlations with ETo. Analysis 

demonstrated that the impact of WS on the estimation of ETo 

was not significant in this study. However, Liu et al. (2014) 

showed that ETo decreases as WS decreases, and that 

sensitivities of ETo to WS is larger in humid regions than drier 

regions. In this study, although SH was significantly correlated 

with ETo, it was not the dominant parameter, especially in 

Jangsu, which is inconsistent with a study by Jun et al. (2012).

2. Development and comparison between ANNs 

and MLR models

The successful development of a BPNN model depends on 

several computational parameters, for example, multiple hidden 

layers, multiple neurons in a hidden layer, a momentum, a 

learning coefficient ratio, a learning rule and a transfer function. 

Too few and too many neurons contribute to under-fitting and 

over-fitting problems, respectively. However, there is no 

guiding rule to determine how many neurons in the hidden layer 

would work best upfront (Kecman, 2001). Therefore, the 

trial-and-error technique was applied by increasing the number 

of hidden layers and the number of neurons in the hidden layer 

until a small acceptable value of error and a high acceptable 

value of R2 were achieved.

Our analyses with ETo revealed that the performance criteria 

for the best BPNN model for both locatoins had the architecture 

of 6-6-1, which had one input layer of 6 neurons, one hidden 

layer of 6 neurons and one output layer of 1 neuron. The 

momentum and learning coefficient ratios were initially set to 

0.4 and 0.5, respectively. However, they were manipulated at 

10 levels (increasing/decreasing by 0.1 from 0.0 to 1.0) in an 

effort to find the best configuration. The optimal momentum 

and learning coefficient rations were finally determined to be 

0.1 and 0.7 for Yeongdong and 0.4 and 0.5 for Jangsu, 

respectively. In addition, this study adopted the Delta learning 

rule with the Tanh transfer function, which adjusts the weight 

of neurons by calculating the gradient of the loss function (i.e., 

gradient descent optimization algorithm).

The statistical analysis of data showed a close relationship 

between ETo calculated using the FAO56-PM equation and ETo 

simulated using the BPNN model; R2 and E were 0.947 and 

0.964, respectively, for Yeongdong and 0.962 and 0.962, 

respectively, for Jangsu, which indicated a high goodness-of-fit 

for both models for both locations. The RMSE and MAE were 

0.057 and 0.010 (mm/day), respectively, for Yeongdong and 

0.034 and 0.004 (mm/day), respectively, for Jangsu (Table 2). 

The 1:1 graphical comparison between the estimated and 

simulated ETo shows a very high performance of the BPNN 

model (Fig. 4).

In comparison to BPNN, the GRNN architecture had a 

relatively simple and static structure, and there were no training 

parameters such as the optimum number of hidden layers or 

its neurons, momentum, learning rule and transfer 

(Ortiz-Rodríguez et al., 2013). The only significant parameter 

Fig. 3 Monthly variation in reference evapotranspiration (ETo) of 

Yeongdong and Jangsu

Region Tavg Tmin Tmax WS RH SH

ETo (Yeongdong) 0.62 0.51 0.68 0.07 -0.35 0.62

ETo (Jangsu) 0.75 0.65 0.79 0.09 -0.29 0.51

Note: Tavg = average air temperature, Tmin = minimum air temperature, Tmax = maximum air temperature, WS = wind speed, 

RH = relative humidity, SH = sunshine hour

Table 1 Correlation coefficient between meteorological data and ETo in the study regions
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in GRNN was a smoothing factor (σ) which was considered 

to be the size of the neuron’s region and was empirically 

determined to be its optimum value. High smoothing factors 

increase the network’s ability to generalize and degrade the 

error of prediction while low smoothing factors degrade the 

network’s ability to generalize and make predictions at all (Kişi, 

2005). In this study, a range of smoothing factors and method 

for selecting the smoothing factors were tested to determine the 

optimum smoothing factor which could be calculated as a sigma 

exponent divided by the number of input units (NeuralWare, 

1993a). 

Statistically, the GRNN models performed relatively well and 

the network structure which provided the best training and test 

results was selected based on the highest coefficient of 

correlation. The network structures of GRNN were with 5 inputs 

and 1 output for both regions, but different smoothing factors 

were empirically determined to be 0.07 for Jangsu and 0.12 for 

Yeongdong. A change in the smoothing factor was evaluated 

based on R2 values and the response of the GRNN model 

accuracy. An increase in the smoothing factor resulted in a 

parabolic curve, which indicated that as the smoothing factor 

increased, the R2 value also increased. However, in practical 

terms, the GRNN model under-estimated ETo during the warm 

periods and over-estimated the values during the cold periods.

Figure 5 shows the performance of GRNN in Yeongdong 

and Jangsu during the test period. The R2 and E values were 

0.860 and 0.692, respectively, for Yeongdong and 0.917 and 

0.676, respectively, for Jangsu. The RMSE and MAE values 

were 0.166 and 0.032 (mm/day), respectively, for Yeongdong and 

0.100 and 0.016 (mm/day), respectively, for Jangsu (Table 2).

Figure 6 shows the performance of the MLR model in 

Yeongdong and Jangsu during the test period. This model 

performed better the GRNN models for the locations. The R2 

and E values were 0.900 and 0.897, respectively, for Yeongdong 

Fig. 4 X:Y scattering plot between FAO56-PM estimated and BPNN simulated results of daily ETo (Left: Yeongdong, Right: Jangsu)

Fig. 5 Scattering plot between FAO56-PM estimated and GRNN simulated results of daily ETo (Left: Yeongdong, Right: Jangsu)
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and 0.897 and 0.883, respectively, for Jangsu. The RMSE and 

MAE were 0.096 and 0.018 (mm/day), respectively, for 

Yeongdong and 0.060 and 0.008 (mm/day), respectively, for 

Jangsu (Table 2). However, the MLR model generated negative 

values for the lowest values of ETo, which indicates that MLR 

is not an appropriate method to simulate ETo even though its 

correlation coefficients were higher. This result was consistent 

with the study by Doğan (2009) that found the same significant 

drawback of MLR models when used to estimate ETo.

IV. CONCLUSIONS

This study showed that six weather parameters, Tavg, Tmin, 

Tmax, WS, RH and SH, measured in Yeongdong and Jangsu 

were significantly correlated with ETo calculated for the areas 

using the FAO56-PM equation. All of these parameters were 

positively correlated with ETo with the exception of RH. It was 

also determined that WS in these regions was not significantly 

correlated with ETo. The present study also discussed the 

application and usefulness of the MLR and two different ANN 

modeling approaches in predicting ETo. The results from the 

training and test datasets clearly demonstrated the ability of the 

BPNN model to predict daily values of ETo accurately using 

the climatic parameters, which were introduced as inputs to the 

chosen ANN models. Simulation results showed that the BPNN 

model outperformed the MLR and GRNN models. 

The computational process to derive the optimal BPNN 

network models was somewhat complicated. Much time was 

spent determining the best values for several network 

parameters, such as the number of layers and neurons, choosing 

the type of activation functions and training algorithms, learning 

rates, and momentum values. The effective way of obtaining 

a good BPNN model was to use trial-and-error methods and 

thoroughly understand the theory of backpropagation. 

Conversely, for the GRNN models, there was only one 

parameter, the smoothing factor, that was adjusted 

experimentally. However, the output estimates of the GRNN 

models during the warmest month, the time needed for 

additional irrigation, were low and would lead farmers to 

under-irrigate their crops. In the case of the MLR model, its 

negative estimates are a major drawback to estimating ETo 

accurately. This study also indicated that even though the BPNN 

Fig. 6 X:Y scattering plot between FAO56-PM estimated and MLR simulated results of daily ETo (Left: Yeongdong, Right: Jangsu)

Region Model R R2 RMSE E MAE

Yeongdong

BPNN 0.973 0.947 0.057 0.964 0.010

GRNN 0.928 0.860 0.166 0.692 0.032

MLR 0.949 0.900 0.096 0.897 0.018

Jangsu

BPNN 0.981 0.962 0.034 0.962 0.004

GRNN 0.958 0.918 0.100 0.676 0.016

MLR 0.947 0.897 0.059 0.883 0.008

Table 2 Statistical criteria for test data with ANN and MLR models
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model required more time and effort to predict ETo compared 

with the GRNN and MLR models, it resulted in predicting the 

most accurate values of ETo. Although the predictions of the 

GRNN model were simpler and faster to obtain, they may not 

suit the needs of farmers or policy makers at critical crop growth 

stages and therefore, the modeler should take this into account 

before choosing the neural network algorithm to determine 

evapotranspiration. 

Overall, the results were quite encouraging and suggested the 

usefulness of neural network-based modeling techniques for 

accurate prediction of ETo. As a beneficial attempt, the present 

study showed the possibility of estimating ETo with limited 

and/or lesser number of meteorological data as inputs, which 

is the limitation of the FAO56-PM equation, and could provide 

valuable information on irrigation scheduling in an easily 

accessible way. The forthcoming papers are underway and will 

be addressed these issues. Furthermore, accurate estimation of 

reference evapotranspiration using ANN modeling would 

contribute to establish in short- and long-term agricultural water 

resource plans against climate change.
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