• Title/Summary/Keyword: BMS 설계

Search Result 49, Processing Time 0.033 seconds

Evaluation of Heat Transfer Mechanisms and Damage Assessment through Fire Testing of Lithium-Ion Batteries (리튬이온 배터리의 화재 시험을 통한 열 전달 메커니즘 및 손상 평가)

  • Jeong-Ho Shin;Yong-Hyeon Kim;Eun-Ju Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.669-676
    • /
    • 2024
  • This study aims to evaluate battery damage and heat transfer mechanisms through fire tests on lithium-ion batteries, and to explore ways to improve the efficiency and safety of battery management systems (BMS). Temperature changes in each sector are measured at points T1, T2, and T3 observing and recording the reactions of surrounding cells for 10 minutes after applying electricity to the ignition electrode. The results show that the batteries in sectors A and B fully ignite, causing severe physical damage, while the batteries in sector C do not ignite and sustain minimal damage. This confirms that the distance between sectors plays a crucial role in reducing ignition and heat propagation. The study suggests that considering the distance between sectors in the design of thermal management systems for lithium-ion batteries can significantly mitigate ignition and heat spread. Future experiments with various battery models and conditions will further propose the ways to enhance the efficiency and safety of BMS.

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

A Design and Operation of Battery Management System for Charge and Discharge Flow Battery (플로우배터리 충방전을 위한 BMS의 설계 및 운용)

  • Ju, Jaeyeon;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.15-16
    • /
    • 2014
  • This paper proposed a construction of BMS to adopt energy storage system using flow battery. To operate flow battery system with BMS, there are motor drive system to pump electrolyte up. And it needs sensors to check leaking and temperature. The proposed system is verified by experiment.

  • PDF

매출액 7% 연구비 투자, '좋은 약'으로 승부

  • Lee, Gang-Bong
    • The Science & Technology
    • /
    • no.4 s.443
    • /
    • pp.84-87
    • /
    • 2006
  • 'CTO에게 듣는다' 네번째 주인공은 장종환 녹십자 부사장이다. 장종환 부사장은 서울대 화학과 졸업 후 미국 피츠버그대학교에서 구조결정학으로 박사학위를 받았다. 그후 아르곤국립연구소 연구원, 일리노이 대학교 약학대학 겸임교수, 듀폰제약 단백질 구조결정학 연구그룹 책임자, BMS 단백질 구조결정학 및 분자설계 연구그룹 책임자, BMS 리서치 펠로로 활동하다 지난 2005년부터 녹십자 CTO를 맡고 있다.

  • PDF

A Design and Operation of Battery Management System for Energy Storage System with Zinc-Bromine Flow Battery (Zinc-Bromine 플로우 배터리용 ESS의 BMS 설계 및 운용)

  • Lim, Jong-ung;Jang, Hyeonseok;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.293-294
    • /
    • 2015
  • This paper proposed a design and operation of energy storage system using Zinc-Bromine flow battery. To operate flow battery system with BMS, it uses motor drive system to pump electrolyte. it also needs sensors to check leaking and temperature. The proposed system proves the validity by experiment.

  • PDF

Development of Container House Equipped with Sensing and Environmental Monitoring System Based on Photovoltaic/Diesel Hybrid System (태양광/디젤 하이브리드 시스템 기반 센서 구동 및 환경 모니터링 컨테이너 하우스 개발)

  • Mi-Jeong Park;Jong-Yul Joo;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.459-464
    • /
    • 2023
  • The mobile house of this article is provided with stand-alone power system that uses photovoltaic energy and enables sensing and environmental monitoring. Excess power generated is stored in lithium batteries, which enable smooth operation of the mobile house even in environment in which solar energy cannot be used. The house has been designed that its systems can be operated continuously by diesel power generation even when photovoltaic energy cannot be generated due to long rainy season or heavy snow. BMS (batter management system) has been constructed for photovoltaic and power management, and monitors the charge/discharge and usage amount of photovoltaic energy. Various sensing data are recorded and transmitted automatically, and the design allows for wireless monitoring by means of computer and smartphone app. The container house proposed in this study enables efficient energy management by performing optimal energy operation in remote areas, parks, event venues, and construction sites where there is no system power source.

Electrical Experimental Analysis for Efficient Aircraft Starting BMS at Extremely Low Temperature (극저온에서의 효율적 항공시동용 BMS를 위한 사전 전기적 실험 분석)

  • Kim, K.W;Kim, J.H.;Kim, Y.J.;Jang, D.C.
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.165-166
    • /
    • 2017
  • 본 논문에서는, 극저온($-32^{\circ}C$)에서 항공기의 초기 시동 및 이의 효율성을 높이기 위한 배터리관리시스템(BMS)의 사전 전기적 특성실험 및 이의 체계적 분석을 실시하였다. 항공기 초기 시동에 사용되는 리튬계열 배터리로서 원통형(cylindrical) 셀을 선택하되, 초기 시동을 위한 순간의 고출력이 가능한 6개의 셀을 수집하였다. 각 셀의 배터리팩(2S2P 및 4S4P) 형태로 구축하고 $-32^{\circ}C$)에서의 저온 방전 실험을 통해 항공기의 초기 시동용 배터리팩에 사용되는 원통형 셀의 선택 및 이의 강인함을 확인할 수 있다. 추가적으로 배터리팩의 설계 및 이의 배터리관리시스템을 위한 초기 정보로서 중요하리라 판단된다.

  • PDF

KSR- III 외피 단열에 대한 연구

  • Lee, Joon-Ho;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-134
    • /
    • 2002
  • Outer surfaces of KSR-III are insulated to protect outer structure and inner payloads from the aerodynamic heating. The characteristics of insulation material (BMS 10-102), selected through careful tests and thermal analyses, are low heat transfer rate and low density. It is applied in a wet and continuous spray pattern for outer surfaces of KSR-III. In the present study, the honeycomb sandwich structure of nose fairing, which is one of the typical multi-layer structures of KSR-III, is thermally analyzed with insulation.

  • PDF

Development of STSAT-3 Battery Management System (과학기술위성 3호의 리튬 이온 배터리 운용 시스템 개발)

  • Park, Kyung-Hwa;Kim, Chol-Ho;Lim, Cheol-Woo;Kim, Jin-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1157-1163
    • /
    • 2009
  • This paper introduces the lithium ion battery management system for STSAT-3 satellite. The specifications of lithium ion battery unit are proposed to supply power to the satellite and the overall electrical design for lithium ion battery BMS is presented. Furthermore, the test results of battery management system are shown to verify the design.

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.