• Title/Summary/Keyword: BM3D

Search Result 831, Processing Time 0.029 seconds

A Study on Design of Reflector Type Frequency Doubler in K-Band (리플렉터 형태의 K-대역 주파수 체배기 구현에 관한 연구)

  • Han, Sok-Kyun;Choi, Hyung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • In this paper, a reflector type frequency doubler for local oscillator at 24GHz is designed and fabricated with ne71300-N MESFET. Optimum source and load impedances are decided through a multiharmonic load pull simulation technique. A conversion gain can be improved using the reflector and fundamental and third harmonics are well suppressed with open stub of $\lambda$/4 length Measured results show output power at 0dBm of input power is -3.776dBm, conversion gain 0.736dB, harmonic suppression 41.064dBc, respectively.

The Study on Multi-band Mixer for Adaptive Radar (적응형 레이다를 위한 다중대역 혼합기에 관한 연구)

  • Go, Min-Ho;Kang, Se-Byeok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1053-1058
    • /
    • 2021
  • This paper presents the multi-band mixer which converts a X-, K- and Ka-band adaptively by adjusting the gate-bias voltage of an active device. The proposed mixer presented a conversion loss of -10 dB at -0.8 V gate-bias voltage for X-band, a conversion loss of -9 dB at -0.3 V gate-bias voltage for K-band and for Ka-band, a conversion loss of -7 dB at -0.2 V gate-bias voltage under the LO power of +6.0 dBm. The 1dB compression point (P1dB) is +0.5 dBm for all band.

Active Shark Antenna for the Vehicle AM/FM/TDMB/GPS Receiver (자동차용 AM/FM/TDMB/GPS 통합 능동형 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.698-705
    • /
    • 2010
  • A vehicle antenna for AM, FM, TDMB, GPS systems was designed and implemented. Omnidirectional AM antenna was designed by ferrite turn style antenna. For the FM and TDMB antenna, folded monopole antenna which helical is folded was applied. GPS antenna for the bandwidth achievement was designed by trapezoidal microstrip patch that has air substrate. Receiving signal strengths by the measurement were presented for the AM, FM and TDMB antenna. AM signal strength was -65.7 dBm, this strength is almost as same conventional pole antenna as -63.4 dBm. It can be replaced conventional pole or glass antenna by the studied antenna. Signal strengths for FM and TDMB were -55.66 and -43.50 dBm at center frequency, they are 5~10 dB higher than conventional antenna. Measurements of bandwidth and gain for the GPS antenna showed 135 MHz under VSWR 2 : 1 and 4.31 dBi, gains over GPS band were 3~5 dB higher than ceramic patch antenna.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

Implementation of the Vehicle Antenna for the AM/FM/TDMB/GPS Receiver (AM/FM/TDMB/GPS 수신용 전장 안테나 제작)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2009
  • In this paper, a vehicle antenna for AM, FM, TDMB, GPS systems was designed and implemented. AM antenna loaded into small space of shark shape was designed by ferrite turn style antenna. For the FM and TDMB antenna, folded monopole antenna which helical is folded was applied. GPS antenna for achieving characteristics both bandwidth and gain improvement was designed microstrip patch that has air substrate and fractal structure. Receiving signal strengths by the measurement were presented for the AM, FM and TDMB antenna. AM signal strength was -65.7dBm, this strength is almost as same conventional pole antenna as -63.4dBm. It can be replaced conventional pole or glass antenna by the studied antenna. Signal strengths for FM and TDMB were -55.66 and -43.50dBm at center frequency, they are 5~10dB higher than conventional antenna. Measurements of bandwidth and gain for the GPS antenna showed 135 MHz under VSWR 2 : 1 and 4.31dBi, gains over GPS band were 3~5dB higher than ceramic patch antenna.

  • PDF

A Study on Network Planning and Optimization Strategy for Network Scalability (Network Scalability를 위한 네트워크 설계 및 최적화 방법에 관한 연구)

  • Lee, Dong-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.511-518
    • /
    • 2007
  • One of the major issues that has to be carefully considered when upgrading current transport network capacity, is network scalability. A novel full-meshed connected ring expansion methodology and planning tool have been proposed. A 3 to 15 node expansion ring has been studied by demonstrating a dramatic system SNR improvement when the proposed planning tool was used. The results are that node output signal and optical SNR have been improved from -16dBm/10dB to +005dBm/21dB by NPOT.

A 1.485 Gbps Wireless Video Signal Transmission System at 240 GHz (240 GHz, 1.485 Gbps 비디오신호 무선 전송 시스템)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.105-113
    • /
    • 2010
  • In this paper, a 1.485 Gbps video signal transmission system using the carrier frequency of 240 GHz band was designed and simulated. The sub-harmonic mixer based on Schottky barrier diode was simulated in the transmitter and receiver. Both of heterodyne and direct detection receivers were simulated for each performance analysis. The ASK modulation was used in the transmitter and the envelop detection method was used in the receiver. The transmitter simulation results showed that the RF output power was -11.4 dBm($73{\mu}W$), when the IF input power was -3 dBm(0.5 mW) at the LO power of 7 dBm(5 mW) in sub-harmonic mixer, which corresponds to SSB(Single Side Band) conversion loss of 8.4 dB. This value is similar to the conversion loss of 8.0 dB(SSB) of VDI's commercial model WR3.4SHM(220~325 GHz) at 240 GHz. The combined transmitter and receiver simulation results showed that the recovered signal waveforms were in good agreement to the transmitted 1.485 Gbps NRZ signal.

Design and Fabrication of the Frequency Tripper for Medium Power (중전력 주파수 3체배기 설계 및 제작)

  • Roh, Hee-Jung;Lee, Byung-Sun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, a frequency tripler has been designed with 100mW medium-power using P-HEMT. It is designed to obtain 7.2GHz frequency at the output that is an integer multiple of 2.4GHz input frequency by using nonlinear device that produces 3rd harmonic. The frequency tripler is designed by using load-pull simulation. To suppress the 2nd and fundamental, notch filter is used for the frequency tripler. The tripler is designed to obtain about 21dBm output power with 15dBm input, i.e., 6dB conversion gain and the suppression of 20dBc at fundamental, and 30dBc at the second harmonics.

High Conversion Gain Millimeter-wave Monolithic Subharmonic Mixer With Cascode Harmonic Generator (Cascode형 하모닉 발생기를 이용한 고변환이득 특성의 밀리미터파 단일칩 Subharmonic 믹서)

  • An, Dan;Kim, Sung-Chan;Sul, Woo-Suk;Han, Hyo-Jong;Lee, Han-Shin;Uhm, Won-Young;Park, Hyung-Moo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.197-203
    • /
    • 2003
  • In this paper, we have presented millimeter-wave high conversion gain quadruple subharmonic mixers adopting the cascode harmonic generator The subharmonic mixers were successfully integrated by using 0.1 ${\mu}{\textrm}{m}$ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide(CPW) structures. Measured output of 1st, 2nd and 4th harmonics of the fabricated cascode 4th harmonic generator are -21.42 dBm, -32.65 dBm and -13.45 dBm, respectively, for an input power of 10 dBm at 14.5 GHz. We showed that the highest conversion gain of 3.4 dB has obtained thus far at a LO power of 13 dBm from the fabricated subharmonic mixers. The millimeter-wave subharmonic mixer also ensure a high degree of isolation showing -53.6 dB in the LO-to-IF and -46.2 dB in the LO-to-RF, respectively, at a frequency of 14.5 GHz. The high conversion gain achieved in this work is the first report among the millimeter-wave subharmonic mixers.

A Power Amplifier for Portable Base Stations Operating in TVWS (TVWS를 이용하는 이동기지국용 전력증폭기)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.110-114
    • /
    • 2017
  • Using a small mobile wireless network as a supplement to the disaster safety network can be useful for eliminating small radio shadowing areas, reducing traffic overloads in disaster areas, and quickly building a disaster communication network in difficult access areas. Potable base station is needed to build a small mobile wireless network, and the portable base station using TVWS(TV White Space) is effective in terms of utilization of radio frequency resources and construction cost of wireless networks. In this paper, we design and implement a power amplifier for portable base station operating in TVWS. The implemented power amplifier operates at 470 ~ 698MHz. The gain of the implemented amplifier is more than 20.1dB, the input/output return loss is more than 11.4dB, and the isolation is more than 39.9dB when the output is off. The IMD characteristic of the power amplifier has characteristics of 61.0dBc with 18.8dBm output at 470MHz, 59.3dBc wih 18.6dBm output at 550MHz and 56.5dBc with 19.0dBm output at 690MHz. The power amplifier implemented in this paper can be used as a power amplifier for portable base station.