• Title/Summary/Keyword: BLE(Bluetooth Low Energy)

Search Result 136, Processing Time 0.023 seconds

Implementation of Smart Asset Management System based on IoT at Incheon Airport (인천공항 IoT 기반 스마트 자산관리시스템의 구현 및 실증)

  • Cha, Hee-June;Son, Seokhyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.305-306
    • /
    • 2021
  • 본 논문에서는 인천공항 Airside와 Landside에 위치한 자산의 효율적인 관리를 위한 사물인터넷(IoT) 기반 스마트 자산관리 시스템의 구성과 실증을 제시한다. IoT기반 스마트 자산관리시스템은 위치정보를 생성하는 IoT 태그와 게이트웨이, 수집된 위치정보를 수신하고 표출하는 서버로 구성되어 있으며, IoT 태그를 자산에 부착하여 자산의 실내외 위치정보를 자산관리 시스템에서 실시간으로 확인할 수 있다. 실내 위치정보는 BLE(Bluetooth Low Energy)를 통해 취득하며, 실외 위치정보는 GPS와 LoRa(Long Range)를 통해 취득 가능하다. 개발한 시스템의 성능 검증을 위해 인천공항 제1여객터미널 내 기설치된 AP를 활용하였으며, 공항 전역을 커버할 수 있는 LoRa Gateway를 설치하였다. 개발한 자산관리 시스템은 공항이 보유한 자산의 도난 방지 등 효율적인 관리 와 공항운영에 기여할 것으로 예상된다.

  • PDF

Design of Vehicle Security Authentication System Using Bluetooth 4.0 Technology (블루투스 4.0 기술을 이용한 차량용 보안인증 시스템 설계)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.325-330
    • /
    • 2017
  • Bluetooth 4.0 is a technology suitable for the Internet of things that is used for communication between various devices. This technology is suitable for developing a service by combining with automobiles. In this study, a security authentication system was designed by linking Bluetooth 4.0 technology and a vehicle system as an implementation example of an object internet service. A procedure was designed for security authentication and an authentication method is proposed using a data server. When the security authentication function is provided, various additional services can be developed using the information collection function of the risk notification and user action history. In addition, BLE (Bluetooth Low Energy) technology, which is a wireless communication technology that enables low-power communication and low-power communication in the process of the standardization and development of Bluetooth technology and technology, improves the battery life through the use of RFID or NFC This study expanded the range possible. The security service can be extended by expanding the scope of authentication by the contactless type. Using the proposed system, a customized service can be provided while overcoming the problems of an existing radio frequency (RF)-based system, portability, and battery usage problem.

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

Hardware Design and Implementation of Joint Viterbi Detection and Decoding Algorithm for Bluetooth Low Energy Systems (블루투스 저전력 시스템을 위한 저복잡도 결합 비터비 검출 및 복호 알고리즘의 하드웨어 설계 및 구현)

  • Park, Chul-hyun;Jung, Yongchul;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.838-844
    • /
    • 2020
  • In this paper, we propose an efficient Viterbi processor using Joint Viterbi detection and decoding (JVDD) algorithm for a for bluetooth low energy (BLE) system. Since the convolutional coded Gaussian minimum-shift keying (GMSK) signal is specified in the BLE 5.0 standard, two Viterbi processors are needed for detection and decoding. However, the proposed JVDD scheme uses only one Viterbi processor by modifying the branch metric with inter-symbol interference information from GMSK modulation; therefore, the hardware complexity can be significantly reduced without performance degradation. Low-latency and low-complexity hardware architecture for the proposed JVDD algorithm was proposed, which makes Viterbi decoding completed within one clock cycle. Viterbi Processor RTL synthesis results on a GF55nm process show that the gate count is 12K and the memory unit and the initial latency is reduced by 33% compared to the modified state exchange (MSE).

Improvement Research of BLE-based System for Monitoring the cause of Breakdown of Automatic Doors (자동문의 고장원인을 모니터링하기 위한 BLE 기반의 시스템 개선연구)

  • Kim, Gi-Doo;Won, Seo-Yeon;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.93-102
    • /
    • 2017
  • Recently increasing usage of smartphones makes the Internet of Things (IoT) a leading technology that can collect and share data through sensor networks and wireless communication such as low-power Bluetooth (BLE). BLE-based application can provide operators more precise information on Automatic Door system by remotely diagnosing the system faults through wireless sensor networks and sensors around the Automatic Door. In this paper, a smart device with extended BLE module is implemented which can monitor and Control the system states and faults remotely without on-site diagnostic. while maintaining system integrity so that increase efficiency of time and costs for system management. We can use the results of this research as a basis in evaluating reliability of data between devices, extending communication module in Controller of obsolete Door systems, and establishing centralized monitoring systems in near future with multi-channel Door Controls.

A study on the design and implementation of a virus spread prevention system using digital technology (디지털 기술을 활용한 바이러스 확산 방지 시스템 설계 및 구현에 관한 연구)

  • Ji-Hyun, Yoo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.681-685
    • /
    • 2022
  • Including the COVID-19 crisis, humanity is constantly exposed to viral infections, and efforts are being made to prevent the spread of infection by quickly isolating infected people and tracing contacts. Passive epidemiological investigations that confirm contact with an infected person through contact have limitations in terms of accuracy and speed, so automatic tracking methods using various digital technologies are being proposed. This paper verify contact by utilizing Bluetooth Low Energy (BLE) technology and present an algorithm that identifies close contact through analysis and correction of RSSI (Received Signal Strength Indicator) values. Also, propose a system that can prevent the spread of viruses in a centralized server structure.

Automation of Inventory Checking System for Outdoor Warehouse (야외창고 재고실사 자동화를 위한 시스템 개발)

  • Bae, Sung Moon;Han, Kwan Hee;Lee, Hwa Yong;Hong, Kum Suk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.138-144
    • /
    • 2018
  • Inventory inspection is an important task to eliminate the inconsistency between real assets and inventory management systems, and it is performed periodically at the site. In the case of a large-sized property, it is mainly managed in an outdoor workshop or a warehouse. However, due to the large area of the outdoor area, it is relatively difficult to identify the quantity and location of the property and is also vulnerable to theft. To solve this problem, we proposed a method and system for performing a warehouse inventory inspection using an unmanned aerial vehicle (UAV) and Bluetooth low energy (BLE) beacons. The proposed method has the following advantages. First of all, if we carry out inventory inspection by utilizing UAV, we can minimize user's effort compared to existing methods. The method of recognizing the asset by attaching the BLE beacon is more costly than using the existing RFID technology, but it is advantageous because the recognition distance is increased and the battery life of the tag is drastically increased. We also designed a BLE beacon reader for the system and implemented a prototype to show the feasibility of the proposed system. The prototype is based on Genuino 101, which is a kind of arduino, and adds HM-10 and Neo-6m modules to provide Bluetooth and GPS functions. The BLE beacon reader was tested in outdoor, and attached in drone. We also developed an inventory checking system based on the web to display results of inventory checking. The proposed approach enables the users to automate the operation of inventory checking on an outdoor warehouse.

Implementation of a Bluetooth-LE Based Wireless ECG/EMG/PPG Monitoring Circuit and System (블루투스-LE 기반 심전도/근전도/맥박 무선 모니터링 회로 및 시스템 구현)

  • Lee, Ukjun;Park, Hyeongyeol;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.261-268
    • /
    • 2014
  • This paper presents a electrocardiogram(ECG), electromyogram(EMG), and Photoplethysmography(PPG) signal wireless monitoring system based on Bluetooth Low Energy (BLE). ECG and EMG sensor interface analog front-end circuits are designed by using off-the-shelf parts. Texas Instruments(TI)'s CC2540DK is used for BLE-based communication. Two CC2540DK modules are used as Peripheral and Central nodes. In peripheral device, vital signals are acquired by the analog front-ends and fed to ADC for analog-to-digital conversion. The peripheral transmitts the data through the air to the central device. The central device receive the data and sends them to PC using UART. GUI is designed using Labview for displaying the acquired vital signals. The developed system can be used for future ubiquitous wireless healthcare system based on bluetooth 4.0.

Position Error Correction Algorithm for Improvement of Positioning Accuracy in BLE Beacon Systems (BLE 비콘 시스템에서 측위 정밀도 향상을 위한 위치 오차 보정 알고리즘)

  • Jung, Jun Hee;Hwang, Yu Min;Hong, Seung Gwan;Kim, Tae Woo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.63-67
    • /
    • 2016
  • Recently, BLE beacons are widely used in indoor precision positioning systems because of their low battery consumption and low infrastructure cost. However, existing BLE beacon based indoor positioning algorithms are difficult to compensate for position errors due to the user's moving speed. Therefore, we proposed a position error correction algorithm that combines bounced cancellation and minimum distance maintenance algorithm with a positioning error correction method using direction vectors. Experimental results show that the proposed algorithm guarantees superior positioning performance than the existing indoor positioning algorithm and also improves the performance of position error compensation.