• 제목/요약/키워드: BLDCM Torque Control

검색결과 23건 처리시간 0.024초

코깅 토크를 포함한 광역 속도 영역상의 BLDCM의 토크 리플 최소화를 위한 기준 프레임 접근기법 (Reference Frame Approach for Torque Ripple Minimization of BLDCM over Wide Speed Range Including Cogging Torque)

  • 박한웅;조성배;원태현;권순재;함병운;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.33-36
    • /
    • 2001
  • Torque ripple control of brush less DC motor has been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. Most methods for suppressing the torque ripples require Fourier series analysis and either the iterative or least mean square minimization. In this paper, the novel approach to achieve the ripple-tree torque control with maximum efficiency based on the d-q-0 reference frame is presented. The proposed method optimize the reference phase current waveforms including even the case of 3 phase unbalanced condition, and the motor winding currents are controlled to follow up the optimized current waveforms by delta modulation technique. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. The validity and practical applications of the proposed control scheme are verified through the simulations and experimental results.

  • PDF

동력의지를 위한 BLDCM 구동 시스템 및 상전류 추정 기법 (A Brushless DC Motor Drive System and Phase Current Estimation Method For Active Knee Prothesis)

  • 남기준;최연범;정두희
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.7-12
    • /
    • 2013
  • 본 논문에서는 동력의지를 위한 브러쉬리스 DC 모터 구동 시스템과 DC 링크단의 전류를 이용하여 상전류를 추정하는 기법을 제안한다. 토크제어를 위해서는 전류 측정이 매우 중요하며 전류 측정 시 스위칭 노이즈를 최소화하기 위해 전류 센싱 시점은 스위칭 전압 명령에 동기화 되어야 한다. 저가의 시스템, 공간의 절약 그리고 제어의 단순화하기 위해 DC 링크단 전류를 사용한 제어를 실시하였다. 또한 환류 다이오드를 통해 흐르는 전류에서 발생하는 DC 링크단 전류와 상전류간의 오차를 줄이기 위해 Analog MUX를 이용한 상전류 추정방법을 사용하였다. 실험 결과를 통해 제안한 시스템의 유효성을 검증하였다.

  • PDF

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Torque Maximization Control of 3-Phase BLDC Motors in the High Speed Region

  • Im, Won-Sang;Kim, Jong-Pil;Kim, Jang-Mok;Baek, Kwang-Ryul
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.717-723
    • /
    • 2010
  • This paper proposes a new torque control algorithm for BLDC motors to get the maximum torque in the high speed region. The delay of the phase currents is severe due to the stator reactance. The torque fluctuations of BLDC motors increase and the average torque is decreases due to a slow rise in the phase current when compared to the back EMF. In this paper, the phase current of BLDC motors under the high speed condition is analyzed and a torque maximization control is developed on the basis of using numerical analysis. Computer simulations and experimental results show the usefulness of the proposed control algorithm.

고조파, 와전류 및 열 해석을 통한 BLDCM, IPMSM의 특성비교 (A characteristic comparison of BLDCM, IPMSM by harmonics, eddy current and thermal analysis)

  • 진창성;배재남;김기찬;손락원;김솔;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.25-27
    • /
    • 2007
  • Brushless DC Motor (BLDCM) is DC motor and Interior PM Synchronous Motor (IPMSM) is AC motor. Besides their way of control is different. But it is similar that both motors rotate synchronous velocity and use the permanent magnet. So, it is an objective to grasp a tendency of motor design and efficiency of motor through a characteristic comparison of BLDCM and IPMSM with the same power, rotation velocity, torque and input voltage.

  • PDF

역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법 (Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation)

  • 박제욱;김종훈;김장목
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

저가형 BLDCM 구동장치를 이용한 정밀위치제어 (Precise position control with a low cost BLDCM drive)

  • 강석주;김준석;설승기;김덕근
    • 대한전기학회논문지
    • /
    • 제44권4호
    • /
    • pp.447-452
    • /
    • 1995
  • In this paper a simple method of a position control for brushless DC motor is presented. For precise position control, a high performance torque controller is needed and a novel current control method is proposed. The current controller detects the uncommutating mode current for every 60.deg. (elec. angle) and controls it with PI controller. The current control loop includes the feedforward of back EMF and the feedforward of the neutral voltage between the neutral point of the inverter and the neutral point of the machine. In the position control, the acceleration pattern is calculated from the position reference. Then the speed trajectory is calculated from the acceleration pattern. The experimental results are presented to verify the proposed methods.

  • PDF

소형 BLDCM 드라이브의 최적 전류제어에 관한 연구 (A Study on Optimal Current Control Method for Small BLDC Motor Drive)

  • 박창석;정태욱
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.108-115
    • /
    • 2015
  • This paper proposed a optimal current control method to improve efficiency of BLDC motors. The aim of the proposed method is to use the maximum torque operating method by increasing the effective voltage at the maximum torque point unlike existing SPM operating method. The proposed method is based on existing IPM maximum torque operating method grafting onto a square wave operating of SPM motors. As the method of increasing the effective output voltage from inverter using the maximum torque point, the proposed method is to improve efficiency of BLDC motors using the same amount of the existing current effectively. For this method, the maximum torque point is carried out by FEA and analysis of magnetic flux vector. In this paper, the prototype of general-purpose BLDC drive is manufactured and the performance characteristic and validity are verified.

히스테리시스 전류제어기 구동 BLDCM의 전류(轉流)현상 해석 (Analysis of the Commutation Phenomenon in Brushless DC Motor with Hysteresis Current Regulator)

  • 강석주;김광헌;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.685-688
    • /
    • 1992
  • This paper studies the commutation phenomenon in the Brushless DC Motor with the trapezoidal BEMF waveform. It is shown that the torque ripple am the speed ripple due to the phase commutation depend on driving sytem, operating speed am load condition. The effects of resistance and BEMF flat width on torque ripple are considered. Speed - torque characteristics of the motor is presented considering the phase commutation. Uncommutating current control method can attenuate the torque ripple in the low speed region, and also minimize the switching loss am switching frequency. In this paper, the commutation phenomena are verified by analytical formulation and simulation.

  • PDF

구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구 (A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor)

  • 최재혁;장훈;김종선;유지윤;송명현;이용순
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF