• Title/Summary/Keyword: BLDC control

Search Result 485, Processing Time 0.024 seconds

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 전동기의 속도제어에 관한 연구)

  • 박기홍;김태성;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2004
  • This paper presents a speed controller method based on the disturbance torque observer for high-performance speed control of the brushless DC (RLDC) motor. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from the viewpoint of the system stability Thus, the feedforward compensation method using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The speed characteristic against disturbance torque can be improved when the bandwidth of the speed controller cannot be made large enough. Consequently, the speed control of the BLDC motor for the high-performance application become achieved.

High Power BLDC Motor Control System of Electric Scooter for Disabled Person (장애인용 전동스쿠터를 위한 고출력 BLDC 모터 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1388-1392
    • /
    • 2013
  • Electric scooter has been using short-lived, low-efficiency DC motor. And motor control system is equipped with imported uniformly, so there is no product differentiation. Also, product design according to the characteristics of disability is difficult. In this study, BLDC motor control system to specialize in a electric scooter for disabled was developed with a semi-permanent features of life, low price, and high performance. This development will also contribute to the activation of the related industries, as well as be able to secure price competitiveness of domestic electric scooter.

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Speed Control of the BLDC Motor using the Disturbance Observer (외란 관측기를 이용한 BLDC 전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.955-962
    • /
    • 2016
  • In this paper, we propose a design method for speed controller, current control of a Brushless Direct Current(: BLDC) motor using disturbance rejection techniques. Disturbance assumes a back electromotive force occurring in the electrical system and the variation of the load acting on the rotary shaft from the outside of the motor. And it assumed to be constant during the time interval and the Luenberger's observer design. So that the error of the observer about the system status can converge to zero show how to set the appropriate gain. Further, to stabilize the whole system, and proposes a method for setting the appropriate PI gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the velocity and current reference. Since the simulation results of the steady state error is within 0.1%, we were able to show the usefulness of the tracking performance of the proposed controller.

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control (근전도 신호 분석 및 BLDC모터 제어를 통한 무릎재활시스템)

  • Kwon, Hyeong-Gi;Ko, Hyeong-Gyu;Song, Yoon-Oh;Son, Eui-Seong;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.1009-1018
    • /
    • 2019
  • This paper describes the design and implementation of a rehabilitation medical device based on a EMG measurement. Rehabilitation systems are controlled using BLDC motors and motor drives. The BLDC motor drive controls the operation and the speed controls the drive through the external servo motor. In addition, potentiometer coupled to the outside of the motor transmits information about the position of the load being rotated by the motor. The rehabilitation algorithm is controlled by limiting the maximum angle of 0 to 120 by utilizing the motor according to the user setting stage during the rehabilitation exercise. The walking algorithm compensates motor control for the low leg of the signal using the difference value of the signal obtained with the surface denser attached to both inner muscles. The motor and surface denser are utilized for the walk motion to control the maximum angle of 0 to 80.

A Study on Speed control Sensorless BLDC using AVR (AVR을 이용한 Sensorless BLDC의 속도제어에 관한 연구)

  • Won, Jin-Kuk;Mon, Ji-Woo;Kim, Byong-Kuk;Son, Dong-Hyuk;Lee, Byung-Jun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1144-1145
    • /
    • 2007
  • This paper is investigated the sensorless drive for BLDC motor using microprocessor. Since the BLDC motor should be commutated according to a rotor position, the sensors are required to detect the position. But the sensors increase cost and volume, complicate the motor configuration, and do not operate properly in some operating environments such as high temperature conditions, so that the necessity of sensorless commutation algorithm is getting increased. This paper is proposed the method to drive BLDC motor without position-detecting sensor using Back EMF. Back EMF commutation method was implemented the sensorless drive system which could control the rotational speed and monitor the behavior of a motor.

  • PDF

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 슬롯리스 PM BLDC 전동기의 속도제어)

  • Yoon Y. H.;Kim Y. C.;Lee S. S.;Won C. Y.;Choe Y. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.536-543
    • /
    • 2004
  • Slotless Permanent Magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and power density has been more widely used In Industrial and factory machine. Generally, PM BLDC meter is necessary that the three Hall-lCs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in PM BLDC Motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if it used only one Hall-IC, we can estimate information of the others phase in sequence through a rotor This paper identified the characteristics and performance by using one Hall-IC with the 3-phase, 2-pole, 6-slot PM BLDC motor.

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.