• Title/Summary/Keyword: BIPV module

Search Result 103, Processing Time 0.038 seconds

Cooling System Development of BIPV Module Using Thermoelectron (열전소자를 이용한 BIPV 모듈의 냉각시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1555-1562
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

A Study of the Architectural Characteristic Depending upon the Module in the BIPV System (BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 -)

  • Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF

Analysis on Thermal Performance of BIPV in Spandrel (스펜드럴부 적용 BIPV 모듈의 열 특성 분석)

  • Kim, Ha-Ryeon;Kim, Jin-Hee;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.364-369
    • /
    • 2011
  • Recently, the cases of BIPV(Building-integrated Photovoltaic) have been increased with interest in renewable energy application for buildings. PV System in building can perform a variety of roles as an energy supplier, exterior materials, aesthetic element and etc. To apply PV modules in buildings, various factors should be considered, such as the installation angle and orientation of PV module, shading, and temperature. The temperature of PV modules that are attached to building surfaces especially is one of the most important factors, as it affects both the electrical efficiency of a PV module and the energy load in a building. BIPV modules designed as finished material for spandrels are presented in this paper. The purpose of this study is to analysis on the thermal performance characteristics of BIPV modules. This study dealt with different types of BIPV modules depending on the backside material, such as clear glass and backsheet. The analysis of monitoring data shows that the PV module temperature was closely related to the solar radiation on the BIPV module surface, and the BIPV used at the backside also had an effect on the PV module temperature that in turn determines its thermal performance.

  • PDF

A Study on the Deduction of Domestic BIPV Definition Revision Plan through Expert Delphi Survey (전문가 델파이 조사를 통한 국내 BIPV 정의 개정 방안 도출에 관한 연구)

  • Park, Seung-Joon;Oh, Choong-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.75-86
    • /
    • 2021
  • Recently, the domestic BIPV market is expected to revitalize with the introduction of the "zero-energy building certification system(2020~)", but it is somewhat stagnant due to the rigidity of definitions in the current domestic BIPV construction standards. Also, since there is delaying revision on definition and standardization of BIPV, the system is so weak that there are cases where it has been approved as BIPV simply by installing a structure on the wall and fixing the module roughly. The damage caused by this can be passed on to consumers, and it can only create a negative perception of BIPV and jeopardize the entire market. The BIPV definition was prepared through a Delphi survey of related experts about market stagnant cause, unreasonable regulation, etc, and a revised plan was derived accordingly.

A Study on the Thermal Effect and Performance of BIPV System acccording to The Ventilation Type of PV Module Backside (후면 환기 조건을 통한 BIPV 모듈 특성분석)

  • Kwon, Oh-Eun;Lee, Sang-Gil;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1302-1303
    • /
    • 2011
  • Building-Integrated Photovoltaic System(BIPV) has a muti-functional to generate electrical power and be able to be exterior materials for building. When PV modules are applied as envelope materials for building, the PV modules are considered on characteristics of the thermal effect and performance of PV module to optimize BIPV system synthetically. The purpose of this study is analysis of the changes of temperature and performance on PV modules. after installing four PV modules that have different ventilation type of PV module backside. Measurement results on this experiment is that the ventilation of PV module backside can control elevated module temperature and improve the performance of PV module. So, the technology development on the ventilation of PV module is suggested introducing effective BIPV system.

  • PDF

Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall (양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석)

  • Kang, Jun-Gu;Kim, Yong-Jae;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

Analyzing the Possibility of the Building Integrated Photovoltaic with DSC by the Case Studies (사례연구를 통한 DSC에 의한 BIPV 가능성 분석 연구)

  • Lee, Eung-Jik
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.54-63
    • /
    • 2017
  • The various colors and transparency of DSC and operability unrelated with directions greatly expand the use of BIPV, as a multi-functional composite of module. Therefore the possibility of DSC BIPV is examined by the case study and the analysis and then its applicability is examined. Most of the DSC BIPVs, which are found through a total of six case studies and analyzes in Korea and abroad, are mainly implemented with window glass and shading devices. This is related to the DSC transparency property. Improvements are due to the irritation of the eye due to the color of the red module. Therefore, it is important to take into account the color of the BIPV window depending on the use of the building and the room. Meanwhile, some colors of application model may stimulate eyes and such colors should be considered by use of buildings and rooms in the application of BIPV window. DSC BIPV has prospective diffusibility with the development of flexible module for the application of building surface.

Temperature Control of BIPV system considering out air temperature (외기온도를 고려한 BIPV 시스템의 온도제어)

  • Baek, Jeong-Woo;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

Cooling system Design to improve efficiency of BIPV System (BIPV 시스템의 효율성 향상을 위한 냉각시스템 설계)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Byung-Jun;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.323-326
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely teen studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorithm of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF