• Title/Summary/Keyword: BIPV PV module

Search Result 77, Processing Time 0.024 seconds

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units (환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.

A Case Study on the Power Performance Characteristics of Building Integrated PV System with Amorphous Silicon Transparent Solar Cells (비정질 실리콘 투과형 태양전지를 적용한 BIPV 시스템 발전 성능에 관한 사례 연구)

  • Jung, Sun-Mi;Song, Jong-Hwa;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.49-52
    • /
    • 2009
  • Practical building integrated photovoltaic system built by Kolon E&C has been monitored and evaluated with respect to power generation, which was installed in Deokpyeong Eco Service Area in Deokpyeong, Gyeonggi, Korea. The amorphous silicon transparent PV module in this BIPV system has 44Wp in power output per unit module and 10% of transmittance with the unit dimension with $980mm{\times}950mm$. The BIPV system was applied as the skylight in the main entrance of the building. This study provided the database for the practical application of the transparent thin-film PV module for BIPV system through 11 month monitoring as well as various statistical analyses such as monthly power output and insolation. Average monthly power output of the system was 52.9kWh/kWp/month which is a 60% of power output of the previously reported data obtained under $30^{\circ}$of an inclined PV module facing south(azimuth=0). This lower power output can be explained by the installation condition of the building facing east, west and south, which was resulted from the influence of azimuth.

  • PDF

Development of PV/T for Performance Improvement of Photovoltaic System (태양광 발전의 성능향상을 위한 PV/T 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.173-181
    • /
    • 2011
  • This paper proposes photovoltaic thermal hybrid module to get the electrical and thermal performance of building integrated photovoltaic(BIPV) system. BIPV system is decreased the system efficiency because output of PV is decreased by the thermal rising on generating. In order to improve the efficiency of BIPV module, water cooling system is applied and generated thermal is used the warm water system. Water cooling system uses the flux control algorithm considering water temperature and power loss. Electrical and thermal performance of proposed photovoltaic thermal hybrid module is confirmed through the actual experiment and herby proved the valid of this paper.

Characteristic Analysis of BIPV Module according to Rear Materials (후면부재에 따른 BIPV 모듈의 특성 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.

Analysis of Performance of Building Integrated PV System of Cold Facade type (Cold facade형 BIPV시스템의 발전성능 분석)

  • Kim, Hyun-II;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Shu, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

An analysis of Classification and Characteristics of PV Modules Applied into Building Roof (PV모듈의 지붕 적용 유형 분류 및 특성 분석)

  • Moon, Jong-Hyeok;Kim, Jin-Hee;Kim, Yong-Jae;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.251-258
    • /
    • 2009
  • Building-Integrated Photovoltaics (BIPV) is a photovoltaic (PV) technology which can be incorporated into the roofs walls of both commercial and domestic buildings to provide a source of electricity. BIPV systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Applying PV modules on roof has an advantage over wall applications as they seem to receive more solar radiation on PV modules. There are various types of PV applications on building roofs: attached, on-top and integrated. This paper describes the classification and characteristics of PV applications on roofs.

  • PDF

A Study of the Architectural Characteristic Depending upon the Module in the BIPV System (BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 -)

  • Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an Installation Angle (건물일체형 태양광발전시스템(BIPV)의 설치조건에 따른 발전특성 연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.386-389
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result, the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$, with respect to the inclined slope of the module. Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth.

  • PDF

Analysis of Performance of Building Integrated PV System into Cold Facade (건물일체형 Cold Facade PV 시스템의 성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1104-1105
    • /
    • 2008
  • This paper presents the assesment of experimented data and estimated data for electrical and thermal performance evaluation of building integrated photovoltaic(BIPV) system of cold facade type. BIPV module is used to estimate the dependence of module temperature on irradiance, ambient temperature and indoor temperature. The module temperature of no free ventilated facade PV system is higher than cold facade PV system about 13.4$^{\circ}C$. By the results on simulation, the reduction of electrical power loss is 9.57% into cold facade according to free ventilation. The annual averaged PR of BIPV system into cold facade is about 73.1%.

  • PDF