• 제목/요약/키워드: BIM Properties

검색결과 63건 처리시간 0.025초

표준도 기반의 토목구조물 BIM 라이브러리 개발 -국토교통부 표준도를 대상으로 (Development of BIM Library for Civil Structures based on Standardized Drawings-Focused on 2D Standard Drawings of The MOLIT)

  • 문현석;주기범
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.80-90
    • /
    • 2014
  • In architecture projects, BIM library has widely been using for prefabrication of products and design process. However, since the shape of structures is different by each project in civil engineering projects and a shape representation system is complicated, it is not easy to develop a standardized BIM library. To solve these issues, this study develops BIM library based on standardized 2D shop drawings for civil structures. The standardized shop drawings, which are the targets of the BIM library model, should be first selected. Besides, in order to define modeling scope with the level of general and shop drawings for each structure, LOD(Level of Detail) and breakdown structure are determined, and development methods of families of 3D object type including 2D profile and rebar through commercial software are established. With these, properties of BIM library are configured, and a utilization model of the BIM libraries is constructed for 3D modeling and a simulation using the BIM library. Therefore, this study can identify properties that are necessary when IFC schema is configured for civil engineering projects. For future, it is expected that easiness of BIM design for the civil engineering projects and generation, management, and analysis system of BIM library for road projects will be secured.

A STUDY ON BIM-BASED 5D SIMULATION IN WEB ENVIRONMENT

  • Jae-Bok Lim;Jae-Hong Ahn;Ju-Hyung Kim;Jae-Jun Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.169-172
    • /
    • 2013
  • Building Information Modeling (BIM) is an effective decision-making platform that helps to save project cost and enhance quality of construction. By generating and linking a wide variety of objects data, BIM can be effectively utilized, and it should be ensured that object properties maintain consistency throughout the project period of design, estimates, construction, maintenance and repair. This study examined how to utilize BIM data in a construction project, by linking cost and schedule data in web environment, to better utilize the information and maintain consistency of the BIM information. To do so, the model integrated WBS data and CBS data, linked them with BIM model to realize 5D simulation in web environment. As a result, cost and schedule data could be simultaneously acquired, and object properties-cost, schedule, location-as well. These are expected to contribute to developing a BIM-based automatic data-processing system in web environment.

  • PDF

A Conversion Process to IFC Files for Integrated Use of Open and Web-based BIM Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Hwang, Hee-Suk
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.11-23
    • /
    • 2019
  • 본 연구에서는 토목분야의 다양한 상용 BIM 모델링 설계 소프트웨어의 사용자들에게 상호 호환성과 상호 운용성을 보장하기 위해 BIM 국제 표준 파일 포맷인 IFC 파일로의 파일 변환 프로세스를 새롭게 설계하여 제시한다. 제안된 프로세스는 상용 BIM 모델링 소프트웨어를 위한 add-in 방식의 컨버터(Converter)를 사용하여, 변환되는 IFC 파일의 3차원 객체 형상 정보에 수량 산출식 코드 속성과 토목 분야 CBS/OBS/WBS 표준분류체계 속성으로 구성되는 추가적인 속성들을 삽입한다. 또한, 개방형(Open) 웹 기반 수량, 공정(4D) 및 공사비(5D) 관리를 위한 IFC 파일의 통합 활용 프로세스를 추가로 설계하고 구축한다. 이러한 작업을 통해 토목 분야의 BIM 모델링 설계 단계에서 최종적인 시공 단계에 이르는 개방형 웹 기반 수량, 공정(4D) 및 공사비(5D)의 연계적 활용에 대한 새로운 프로세스를 제시하는 것이 본 연구의 궁극적인 목적이다.

BIM 소프트웨어 호환성 분석 : 사용자정의 속성정보인 GBS를 중심으로 (Interoperability Analysis for BIM software Based on User-defined Properties)

  • 강승희;하지원;주태환;정영수
    • 한국건설관리학회논문집
    • /
    • 제17권2호
    • /
    • pp.99-109
    • /
    • 2016
  • 건설 프로젝트에서 발생하는 다양한 정보를 통합관리하기 위한 BIM의 실무활용이 확산되고 있으며, 활용 형태 또한 점차 고도화되고 있다. 이에 건축 및 플랜트산업에서 BIM 환경구축을 위해 다양한 BIM 소프트웨어들이 사용되고 있으나, 정보 호환성 및 통합성 부족은 주요 장애요인으로 지적되고 있다. 이러한 배경에서, 본 연구에서는 사용자정의 속성정보 (GBS)를 기반으로 한 BIM 활용의 기능적 고도화 및 업무효율화 방안을 검증하기 위해 BIM 소프트웨어간 호환성 테스트를 실시하였다. 호환성 테스트 결과, 'BIM 시스템 관점'에서는 Viewer Tool과 Simulation Tool이 Authoring Tool에 비해 정보 호환성이 전반적으로 높았으며, 'BIM 정보 관점'에서는 사용자정의 속성정보 (GBS)의 호환성이 시스템 기본 속성정보 및 Logic 정보보다 높았다. 즉, 도형정보와 비도형정보의 연계 자동화를 가능케하는 GBS의 적용을 통해 BIM 활용의 기능적인 고도화 및 업무부담 최소화가 가능하며, 또한, 추후 사용자정의 속성정보를 활용한 도형과 다양한 비도형정보와의 정보연계에 대한 연구가 이뤄진다면, 건설 프로젝트의 통합관리에 한층 가까워질 것이라 기대된다.

Symbol recognition using vectorial signature matching for building mechanical drawings

  • Cho, Chi Yon;Liu, Xuesong;Akinci, Burcu
    • Advances in Computational Design
    • /
    • 제4권2호
    • /
    • pp.155-177
    • /
    • 2019
  • Operation and Maintenance (O&M) phase is the main contributor to the total lifecycle cost of a building. Previous studies have described that Building Information Models (BIM), if available with detailed asset information and their properties, can enable rapid troubleshooting and execution of O&M tasks by providing the required information of the facility. Despite the potential benefits, there is still rarely BIM with Mechanical, Electrical and Plumbing (MEP) assets and properties that are available for O&M. BIM is usually not in possession for existing buildings and generating BIM manually is a time-consuming process. Hence, there is a need for an automated approach that can reconstruct the MEP systems in BIM. Previous studies investigated automatic reconstruction of BIM using architectural drawings, structural drawings, or the combination with photos. But most of the previous studies are limited to reconstruct the architectural and structural components. Note that mechanical components in the building typically require more frequent maintenance than architectural or structural components. However, the building mechanical drawings are relatively more complex due to various type of symbols that are used to represent the mechanical systems. In order to address this challenge, this paper proposed a symbol recognition framework that can automatically recognize the different type of symbols in the building mechanical drawings. This study applied vector-based computer vision techniques to recognize the symbols and their properties (e.g., location, type, etc.) in two vector-based input documents: 2D drawings and the symbol description document. The framework not only enables recognizing and locating the mechanical component of interest for BIM reconstruction purpose but opens the possibility of merging the updated information into the current BIM in the future reducing the time of repeated manual creation of BIM after every renovation project.

BIM 기반의 공간객체를 이용한 물량산출 정확성 분석 (An Accuracy Analysis on Quantity Take-off Using BIM-based Spatial Object)

  • 차유나;김성아;진상윤
    • 한국BIM학회 논문집
    • /
    • 제4권4호
    • /
    • pp.13-23
    • /
    • 2014
  • After being introduced, Building Information Modeling (BIM) has been actively applied to the cost estimation of construction projects, and various studies on BIM based quantity take-off have been carried out. In practice, however, these calculations take considerable time, because BIM based quantity take-off is further conducted along with 2D-based quantity take-off. Studies on the quantity take-off using BIM spatial objects have been carried out on early stages of projects, but how this method differs from the existing quantity take-off method and how accurate it is in comparison have rarely been verified. Therefore, by comparing 2D based quantities with quantities through BIM spatial objects, this study analyzed the accuracy of quantity take-off using BIM spatial objects. To this end, the properties of BIM spatial objects and quantity calculable spatial types were analyzed, and existing 2D-based quantities and quantities extracted from BIM spatial objects were compared through a case study. As a result, the quantity of spatial objects found to be more by about 7.13% in 0.05% and therefore, this difference should be considered during quantity take-off using BIM spatial objects. Through the results of this study, we can improve the accuracy of quantity take-off using BIM spatial objects in the early stage of a construction project.

표준도 기반 BIM 라이브러리 검색지원을 위한 웹기반 공유시스템 개발 (Development of Web-based Sharing System for Inquiring Civil BIM Libraries Based on Standardized 2D Drawings)

  • 문현석;김창윤;조근하;주기범
    • 한국BIM학회 논문집
    • /
    • 제6권1호
    • /
    • pp.25-32
    • /
    • 2016
  • In BIM environments for infrastructures, civil structures such as road, bridge and tunnel etc., created into 3D objects, integrated with their properties, securing BIM design productivity is very critical during 3D modeling. To solve this issue, configuring BIM libraries so that the users can utilize prefabricating in advance 3D objects that have been applying repeatedly during BIM design is essential so much. Current BIM libraries have made focused on Ready-Made for architectural facilities. However, establishing environment for delivering BIM library for civil facilities is very sparse. Accordingly, this study developed a web-based sharing system for delivering BIM library contents based on standardized drawing for civil area. To do this, we have analyzed core features and operation system of BIM library sharing system in domestic and overseas. Besides, functional requirements that are necessary for developing BIM library sharing system was derived, and through operation scenario configuration, the web-based system was developed according to the detailed mechanism. It is expected that this system can enhance BIM design productivity during library based modeling, and can be utilized as construction supporting tools that can help construction managers to make a design change.

BIM 기반 건축법규 자동검토를 위한 사전정의서 개발 (Development of Pre-Specification for BIM-based Automated Building Code Checking)

  • 김인한;장재문;최중식
    • 한국CDE학회논문집
    • /
    • 제21권1호
    • /
    • pp.31-41
    • /
    • 2016
  • Building Information Modeling (BIM) has been adopted in variety domain of construction industry. In this circumstances, interest of BIM model quality has been increased. In many countries, automated building code checking system by Industry Foundation Classes (IFC) has been developed and studied to use web based building permission systems. IFC is international standard of BIM format. However, the data structure of IFC does not include all of objects and properties about national building codes. In this paper, we developed the information specification between IFC data structure and national building code to increase interoperability. First, we drew the criteria from literature review to analyze the building code. And then, we analyzed building code and sorted objects and properties for automated building code checking. After that we made mapping table between the sorted data and IFC specification. Using the mapping table, we developed pre-specification about building codes information that does not exist in IFC specification. And the defined information can be used to develop the BIM modeling guide and national building permission system. The pre-specification support increasing the interoperability between user and automated building code checking system. Increasing thee interoperability makes improvement accuracy and reliability about result of automated building code checking.

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권4호
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF