• Title/Summary/Keyword: BIM Adoption

Search Result 66, Processing Time 0.023 seconds

A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP (건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구)

  • Kim, Ji-Eun;Park, Sang-Chul;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5695-5706
    • /
    • 2015
  • Recently adoption of BIM technology for building renovation and remodeling has been increased in construction industry. However most buildings have trouble in 2D drawing-based BIM modeling, because 2D drawings have not been updated real situations continually. Applying reverse engineering, this study analysed the point cloud data structure and the process for guideline of reverse engineering of architectural MEP, and deducted the relating considerations. To active usage of 3D scanning technique in domestic, the objective of this study is to analyze the point cloud data processing from real site with terrestrial LiDAR and the process from data gathering to data acquisition.

A study on influencing factors and revitalization of the adoption of off-site construction - Case study on the construction market of the United Kingdom - (현장외 시공 공법 채택의 영향 인자 및 활성화 방안 연구 - 영국 건설 시장 사례 연구 -)

  • Kim, Min-Koo;Brilakis, Ioannis;An, Yun-Kyu
    • Journal of KIBIM
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2015
  • Over a few decades, off-site construction (OSC) has been widely used for building and bridge constructions. OSC is a construction method that build structures at a different location than the location of use, and normally it occurs in a manufacturing plant. There are many studies on the perceived benefits of OSC, yet relatively few studies which quantitatively assess the benefits and factors affecting the decision of the use of OSC have been investigated. This study investigates the influencing factors of the use of OSC system and its revitalization solutions in the construction industry. As the research method, interview and questionnaire survey are conducted by visiting industry experts of OSC and sending a questionnaire to the OSC stakeholders including engineers, manufacturers, contractors and clients in the United Kingdom (UK). The construction industry of the UK is targeted for the study since it has a number of commons with the Korean construction industry in terms of the structure of the construction industry and current low take-up of the OSC. The survey provides the results that the reluctance of clients to use OSC is the key factor of the slow use of OSC despite of the perceived benefits of OSC. In addition, in order to revitalize OSC in the construction market, three revival recommendations are suggested based on the survey results.

Efficient 3D Modeling Automation Technique for Underground Facilities Using 3D Spatial Data (3차원 공간 데이터를 활용한 지하시설물의 효율적인 3D 모델링 자동화 기법)

  • Lee, Jongseo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1670-1675
    • /
    • 2021
  • The adoption of smart construction technology in the construction industry is progressing rapidly. By utilizing smart construction technologies such as BIM (Building Information Modeling), drones, artificial intelligence, big data, and Internet of Things technology, it has the effect of lowering the accident rate at the construction site and shortening the construction period. In order to introduce a digital twin platform for construction site management, real-time construction site management is possible in real time by constructing the same virtual space. The digital twin virtual space construction method collects and processes data from the entire construction cycle and visualizes it using a 3D model file. In this paper, we introduce a modeling automation technique that constructs an efficient digital twin space by automatically generating 3D modeling that composes a digital twin space based on 3D spatial data.

Analysis of 3D Building Construction Applications in Augmented Reality

  • Khan, Humera Mehfooz;Waseemullah, Waseemullah;Bhutto, Muhammad Aslam;Khan, Shariq Mahmood;Baig, Mirza Adnan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.340-346
    • /
    • 2022
  • Construction industry is considered as one of the oldest industries in the world since human came into being and the need of their own space is realized. All this led to make the world a space of many beautiful constructive ventures. As per the requirements of today's world, every industry is recognizing the need for use and adoption of modern as well as innovative technologies due to their benefits and timely production. Now construction industry has also started adopting the use of modern and innovative technologies during their projects but still the rate of adoption is so slow. From design to completion, construction projects take a lot to manage for which technology based solutions have continuously been proposed. These include Computer Aided Design (CAD), building information modeling (BIM) and cloud computing have been proved to be much successful until now. The construction projects are high budgeted, and direly require timely and successful completion with quality, resource and other constraints. So, the researchers observe the need of more clear and technology based communication between the construction projects and its constructors and other stakeholders is required before and during the construction to take timely precautions for expected issues. This study has analyzed the use of Augmented Reality (AR) technology adopting GammaAR, and ARki applications in construction industry. It has been found that both applications are light-weighted, upgradable, provide offline availability and collaborative environment as well as fulfil most of the requirements of the construction industry except the cost. These applications also support different screen size for better visualization and deep understanding. Both applications are analyzed, based on construction's application requirements, usability of AR and ratings of applications user collected from application's platform. The purpose of this research is to provide a detail insight of construction applications which are using AR to facilitate both the future developers and consumers.

Evaluation of current practice and associated challenges towards integrated design

  • Fadoul, Abdelaziz H.;Tizani, Walid
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.89-105
    • /
    • 2017
  • The AEC industry is highly interested in effective ICT adoption and deployment, including its utilization within the design process. However, its capabilities have not yet been fully exploited and it is an obvious area for further research. Architects and engineers tend to have some technological support to monitor and evaluate the possible impacts of decisions made throughout the design process. Many aspects are left out of consideration and the entire project is broken up into independent fragments or domains that are combined together at a later, post hoc stage. Impact of separate decisions on each others have to be interpreted on a person-to-person basis between the involved design stakeholders. This paper attempts to evaluate current design practice and associated challenges towards design integration with advanced technologies, such as BIM, by conducting an online survey targeted at designers and engineers, who are most affected by its emerging issues. The outcomes of this study are presented and analysed, concluding that the current design process fails to meet expectations and needs improvements. It goes further to propose the requirements for an integrated system as a means for an effective solution for the identified problem.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF