• Title/Summary/Keyword: BIG4

Search Result 3,612, Processing Time 0.035 seconds

Effective visualization methods for a manufacturing big data system (제조 빅데이터 시스템을 위한 효과적인 시각화 기법)

  • Yoo, Kwan-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1301-1311
    • /
    • 2017
  • Manufacturing big data systems have supported decision making that can improve preemptive manufacturing activities through collection, storage, management, and predictive analysis of related 4M data in pre-manufacturing processes. Effective visualization of data is crucial for efficient management and operation of data in these systems. This paper presents visualization techniques that can be used to effectively show data collection, analysis, and prediction results in the manufacturing big data systems. Through the visualization technique presented in this paper, we have confirmed that it was not only easy to identify the problems that occurred at the manufacturing site, but also it was very useful to reply to these problems.

Using GIS Spatial Analysis to Protect Critical Habitats in the Big Cyprus Watershed, South Florida (GIS 공간분석을 통한 남부 플로리다 Big Cyprus 분수계 보존서식지 보호)

  • Kim, Jin-Ho;Kim, Chang-Ho;Kim, Hyun-Woo
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.31-38
    • /
    • 2017
  • Big Cyprus watershed, which is located in the Southwestern Florida and covers Everglades National Park that has high proportions of endangered species' habitats, plays an important role for the entire Florida ecosystem. Due to the rapid urbanization and high population growth, however, the watershed has been continuously polluted and the current regional watershed plan is not created to accommodate the speed of growth. The purpose of this study is to suggest proper protection policies and strategies for the Big Cyprus watershed by employing the Inverse Distance Weighted interpolation tool in Geographic Information System. The findings show that conservation priorities should be given in the North and South portion of the watershed area, which are proven to be the most important aisle for the habitats in the Big Cyprus. The study concludes with policy suggestions that local environmental planners should concentrate for adopting their new watershed plan in the near future.

Relations Between Paprika Consumption and Unstructured Big Data, and Paprika Consumption Prediction

  • Cho, Yongbeen;Oh, Eunhwa;Cho, Wan-Sup;Nasridinov, Aziz;Yoo, Kwan-Hee;Rah, HyungChul
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • It has been reported that large amounts of information on agri-foods were delivered to consumers through television and social networks, and the information may influence consumers' behavior. The purpose of this paper was first to analyze relations of social network service and broadcasting program on paprika consumption in the aspect of amounts to purchase and identify potential factors that can promote paprika consumption; second, to develop prediction models of paprika consumption by using structured and unstructured big data. By using data 2010-2017, cross-correlation and time-series prediction algorithms (autoregressive exogenous model and vector error correction model), statistically significant correlations between paprika consumption and television programs/shows and blogs mentioning paprika and diet were identified with lagged times. When paprika and diet related data were added for prediction, these data improved the model predictability. This is the first report to predict paprika consumption by using structured and unstructured data.

A Study on Development of a Tourism Course in Seosan using Social using Media Big Data

  • Ha, Yeon-Joo;Park, Jong-Hyun;Yoo, Kyoungmi;Moon, Seok-Jae;Ryu, Gihwan
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.134-140
    • /
    • 2021
  • Big data has recently been used in various industries such as tourism, medical care, distribution, and marketing. And it is evolving to the stage of collecting real-time information or analyzing correlations and predicting the future. In the tourism industry, big data can be used to identify the size and shape of the tourism market, and by building and utilizing a large-capacity database, it is possible to establish an efficient marketing strategy and provide customized tourism services for tourists. This paper has begun with anticipation of the effects that would occur when big data is actively used in the tourism field. Because the method of use must have applicability and practicality, the spatial scope will be limited to Seosan, Chungcheongnam-do, and research will be conducted. In this paper, to improve the quality of tourism courses by collecting and analyzing the number of mention data and sentiment index data on social media, which reflect the tourist's interest, preference and satisfaction. Therefore, it is used as basic data necessary for the development of new local tourism courses in the future. In addition, the development of tourism courses will be able to promote tourism growth and also revitalizing the local economy.

A Study on MIS Curriculum and NCS-based Big Data Analysis Job Competency Using Keyword Network Analysis (키워드 네트워크 분석을 이용한 MIS 교과정보와 NCS 기반 빅데이터 분석 직무역량에 대한 연구)

  • Lee, Taewon;Sung, Haengnam;Kim, Eun-Jung
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.101-121
    • /
    • 2020
  • Purpose The purpose of this study is to understand the current status of MIS curriculum and to find ways to improve it. In addition, the results of the research can be used as basic data for improving MIS curriculum. Design/methodology/approach A research framework was designed to derive research results using the keyword network analysis method of this study: 1) Keywords were extracted based on the six units of the big data analysis job competency. 2) And based on the extracted keywords, the relationship between the keywords and MIS curriculum for each university was identified. Findings In the MIS curriculum information of a few universities, education related to big data analysis was conducted. 1) In the MIS curriculum of a few universities, education related to big data analysis was conducted. However, MIS curriculum of the university, which is the subject of analysis, education focused on concepts and theory rather than practical education was conducted. 2) And it was confirmed that there is a difference from the education required by the industry.

A Container Orchestration System for Process Workloads

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.270-278
    • /
    • 2023
  • We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.

Analyzing trends in cultural contents tourism using big data

  • Youn-hee Choi;Sang-Hak Lee;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.326-331
    • /
    • 2023
  • Korea's cultural content industry can develop into another unique tourism industry. However, since other prior studies focus on the Japanese content industry, this study identifies modern industrial trends by combining the unique characteristics of Korean content, that is, cultural content tourism, and the analysis ability of big data. The current status and direction of the cultural content tourism industry were studied by utilizing the extensive information collection and in-depth analysis capabilities of big data, and as a result, it was confirmed that the trend of the cultural content industry is related to the business aspect of cultural content, not the pure content interest of cultural content. This shows that Korean cultural contents have a strong business aspect. As a limitation, when research design was conducted using social media big data, the age, gender, etc. of the subject analyzed with unique anonymity could not be known. The Korean cultural content industry is expected to be successful in terms of business.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

A Study on the Emergence of the U.S. Modern Big Business in the Early 20th Century (20세기초 미국의 현대적 대기업 등장에 관한 연구)

  • Lim, Jong Wha
    • Industry Promotion Research
    • /
    • v.5 no.4
    • /
    • pp.91-100
    • /
    • 2020
  • In the U.S.A. from the late 19th to the early 20th century, the big business system emerged surpassing the British Empire economy. Such growth resulted from the realization of the "American-productive mode' being derived from the continuous immigrants inflow, renovative development of transportation, national markets formation and R&D of the science·technology. During 10 years after 1895, American economy was prevalent with the combination trends by the vertical or horizontal integration and these both mixed systems. As such big business was recognized, the American domestic citizens expressed the strong doubt to the revolutionary change and its public benefits and inaugurated the anti-big business campaign with deep concern that the American traditional symbol 'land of the wealth and opportunity' would be threatened. Although the governmental organizations controlling big business were established and the control laws were enforced, the American society accepted the new economic order. This situation resulted from the American economic prosperity, material affluence and managerialism of the big business.

A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis (빅데이터 분석을 활용한 인공지능 인식에 관한 연구)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.129-130
    • /
    • 2018
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Artificial Intelligence" keyword, one month as of May 19, 2018. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Artificial Intelligence" has been found to be technology (4,122). This study suggests theoretical implications based on the results.

  • PDF