• Title/Summary/Keyword: BIG4

Search Result 3,614, Processing Time 0.029 seconds

A Study of Information Literacy Curriculum Using Topic Modeling (토픽모델링을 활용한 정보활용교육 연구주제 분석 및 교육내용 제안)

  • Jihye, Yun;Yoo Kyung, Jeong
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.1-21
    • /
    • 2022
  • The aim of this study is to identify the research topics and suggest an information literacy curriculum by analyzing research articles on information literacy. For this purpose, we applied the topic modeling technique to 97 scientific articles and identified the core contents of information literacy education, such as media literacy, information literacy instruction, and the use of information resources. Based on the analysis results, we suggested an information literacy curriculum by considering the Big 6 model, information literacy standards of American Association of School Library, and Association of College and Research Libraries's information literacy competencies. This study is significant in that it considered 'use of information resources' and 'information ethics' to suggest information literacy education.

A Study on Security Threats and Countermeasures in Smart Farm Environments (스마트 팜 환경에서 보안 위협 및 대응 방안에 관한 연구)

  • Sun-Jib Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • IoT, Big-data, AI, and Cloud technologies, which are core technologies of the 4th Industrial Revolution, have recently been applied to various fields and are being used as core technologies for new growth engines. Accordingly, these core technologies are applied to the agricultural field without exception, contributing to solving the problem of labor shortage, reducing production costs, and reducing environmental burden through remote and automated production without time and space constraints. However, as these core technologies are utilized, security incidents are occurring in the agricultural field as well. Accordingly, this study divides smart farms into three stages(Basic, Middle, and High) and presents the characteristics and security threats of each stage. In particular, as the number of container-based services and research increases under cloud platforms, we would like to suggest countermeasures focusing on security threats.

Optimizing User Experience While Interacting with IR Systems in Big Data Environments

  • Minsoo Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.104-110
    • /
    • 2023
  • In the user-centered design paradigm, information systems are created entirely tailored to the users who will use them. When the functions of a complex system meet a simple user interface, users can use the system conveniently. While web personalization services are emerging as a major trend in portal services, portal companies are competing for a second service, such as introducing 'integrated communication platforms'. Until now, the role of the portal has been content and search, but this time, the goal is to create and provide the personalized services that users want through a single platform. Personalization service is a login-based cloud computing service. It has the characteristic of being able to enjoy the same experience at any time in any space with internet access. Personalized web services like this have the advantage of attracting highly loyal users, making them a new service trend that portal companies are paying attention to. Researchers spend a lot of time collecting research-related information by accessing multiple information sources. There is a need to automatically build interest information profiles for each researcher based on personal presentation materials (papers, research projects, patents). There is a need to provide an advanced customized information service that regularly provides the latest information matched with various information sources. Continuous modification and supplementation of each researcher's information profile of interest is the most important factor in increasing suitability when searching for information. As researchers' interest in unstructured information such as technology markets and research trends is gradually increasing from standardized academic information such as patents, it is necessary to expand information sources such as cutting-edge technology markets and research trends. Through this, it is possible to shorten the time required to search and obtain the latest information for research purposes. The interest information profile for each researcher that has already been established can be used in the future to determine the degree of relationship between researchers and to build a database. If this customized information service continues to be provided, it will be useful for research activities.

An Exploratory Study of Psychological Characteristics of Metaverse Users (메타버스 이용자의 심리 특성 탐색 연구)

  • Hyeonjeong Kim;HyunJung Kim;Beomsoo Kim;Hwan-Ho Noh
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.63-85
    • /
    • 2023
  • This study aims to identify the primary user group in the growing metaverse space based on the increased interest during the COVID-19 era. It also aims to explore the predictive factors for metaverse adoption. To predict online activities, the study examined user purposes, motivations, and relevant demographic factors as predictive variables through model analysis. The data from the Korean Media Panel Survey were used, and a two-stage analysis with the Heckman two-stage sample selection model was conducted to predict metaverse users. The analysis revealed that the key factors influencing metaverse adoption were offline activities, openness, OTT usage, and purchasing of paid content. Moreover, in the second stage model, openness, gender, and paid content purchases were identified as significant variables for increasing metaverse usage time. These results indicate that understanding metaverse users is essential in the context of the rising interest in online activities during the COVID-19 era and can provide valuable insights for metaverse platform-related companies and developers.

Research on the Current Status of Public Libraries' Future Competency Programs and Social Awareness Survey (공공도서관의 미래역량 프로그램 현황 및 사회적 인식조사 연구)

  • Youngji Shin
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.151-178
    • /
    • 2023
  • At a time when libraries are attracting attention as institutions and spaces that can foster future capabilities, this study conducts a general survey of the current status of public library programs related to the future capabilities and investigate the social awareness on libraries and future capabilities through big data analysis. As a result, first, programs are being planned and provided with the keyword of future capabilities, but most of them are limited to makerspace programs, edutech programs, and experience programs. Also, the detailed types of programs are limited to 3D print, coding, AR, VR, etc. In addition, current library programs related to future capabilities are not subdivided by each competency, these programs are provided in the comprehensive sense of future competency. Second, in the awareness survey through big data analysis, education, future capabilities, and libraries were found to be highly frequent, and it was seen that library reading, books, culture, and programs were related to strengthening future capabilities. Accordingly, in the future, libraries need to develop and provide systematic programs to cultivate future capabilities, and there is also a need to develop future capabilities improvement programs that take the life cycle into account.

A Study on the Purchasing Factors of Color Cosmetics Using Big Data: Focusing on Topic Modeling and Concor Analysis (빅데이터를 활용한 색조화장품의 구매 요인에 관한 연구: 토픽모델링과 Concor 분석을 중심으로)

  • Eun-Hee Lee;Seung- Hee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.724-732
    • /
    • 2023
  • In this study, we tried to analyze the characteristics of color cosmetics information search and the major information of interest in the color cosmetics market after COVID-19 shown in the text mining analysis results by collecting data on online interest information of consumers in the color cosmetics market after COVID-19. In the empirical analysis, text mining was performed on all documents such as news, blogs, cafes, and web pages, including the word "color cosmetics". As a result of the analysis, online information searches for color cosmetics after COVID-19 were mainly focused on purchase information, information on skin and mask-related makeup methods, and major topics such as interest brands and event information. As a result, post-COVID-19 color cosmetics buyers will become more sensitive to purchase information such as product value, safety, price benefits, and store information through active online information search, so a response strategy is required.

Association Between Persistent Treatment of Alzheimer's Dementia and Osteoporosis Using a Common Data Model

  • Seonhwa Hwang;Yong Gwon Soung;Seong Uk Kang;Donghan Yu;Haeran Baek;Jae-Won Jang
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • Background and Purpose: As it becomes an aging society, interest in senile diseases is increasing. Alzheimer's dementia (AD) and osteoporosis are representative senile diseases. Various studies have reported that AD and osteoporosis share many risk factors that affect each other's incidence. This aimed to determine if active medication treatment of AD could affect the development of osteoporosis. Methods: The Health Insurance Review and Assessment Service provided data consisting of diagnosis, demographics, prescription drug, procedures, medical materials, and healthcare resources. In this study, data of all AD patients in South Korea who were registered under the national health insurance system were obtained. The cohort underwent conversion to an Observational Medical Outcomes Partnership-Common Data Model version 5 format. Results: This study included 11,355 individuals in the good persistent group and an equal number of 11,355 individuals in the poor persistent group from the National Health Claims database for AD drug treatment. In primary analysis, the risk of osteoporosis was significantly higher in the poor persistence group than in the good persistence group (hazard ratio, 1.20 [95% confidence interval, 1.09-1.32]; p<0.001). Conclusions: We found that the good persistence group treated with anti-dementia drugs for AD was associated with a significant lower risk of osteoporosis in this nationwide study. Further studies are needed to clarify the pathophysiological link in patients with two chronic diseases.

Improving Inspection Systems for Radio Stations: An Emphasis on the ISO 2859-1 Sampling Method (무선국 검사제도 개선방안에 관한 연구: ISO 2859-1 샘플링 검사기법을 중심으로)

  • Hyojung Kim;Yuri Kim;Sina Park;Seunghwan Jung;Seongjoon Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.515-530
    • /
    • 2023
  • Purpose : This research aims to develop a data-driven inspection policy for radio stations utilizing the KS Q ISO 2859-1 sampling method, addressing potential regulatory relaxations and impending management challenges. Methods : Using radio station inspection big data from the past six years, we established a simulation model to evaluate the current policy. A new inspection sampling policy framework was designed based on the KS Q ISO 2859-1 method. The study compares the performance of the current and proposed inspection systems, offering insights for an improved inspection strategy. Results : This study introduced a simulation model for inspection system based on the KS Q ISO 2859-1 sampling method. Through various experimental designs, key performance indicators such as non-detection rate and sample proportion were derived, providing foundational data for the new inspection policy. Conclusion : Using big data from radio station inspections, we evaluated current inspection systems and quantitatively compared a new system across diverse scenarios. Our simulation model effectively verified the feasibility and efficiency of the proposed framework. For practical implementation, essential factors such as lot size, inspection cycle, and AQL standards need precise definition and consideration. Enhancing radio station inspections requires a policy-driven approach that factors in socio-economic impacts and solicits feedback from industry participants. Future study should also explore various perspectives related to legislative, institutional, and operational aspects of inspection organizations.

An Analysis of Fishing Village Tourism Issues Reported in Korea Media (국내 언론에 보도된 어촌관광 이슈의 변동 분석)

  • Ji-Yeong Ko;Chae-wan Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.299-307
    • /
    • 2024
  • Fishing villages, which are the focus of this study, are interested in fishing tourism for creating a new income base and sustaining fishing communities. This is because the extraordinary nature of the fishing village space creates new values in line with the function of tourism, however, the related policies are less than adequate compared to the importance of fishing village tourism. Therefore, this study aims to analyze the interest of Korean society in fishing village tourism the manner in which this issue has changed over time. Using the news analysis system, BigKinds, we systematically collected and analyzed articles related to fishing village tourism reported in the domestic media. The results showed that social interest in fishing village tourism and government policy support had increased over time, suggesting that fishing village tourism was an important strategy that could revitalize local economies and prevent the disappearance of fishing villages.

Behavioral Analysis to reduce Alcohol and Smoking Rates of Adolescents (청소년 음주율 및 흡연율 감소를 위한 행태 분석)

  • Seung-Yeon Hwang;Jin-Yong Moon;Jae-Kon Oh;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.177-182
    • /
    • 2024
  • The issue of teenage drinking and smoking has been raised repeatedly over the years. However, for various reasons, adolescents have continued to drink and smoke up to the present. Consequently, various preventive education programs are being implemented in all elementary, middle, and high schools, but these efforts have not been significantly effective in reducing the rates of adolescent drinking and smoking. Furthermore, while youth centers exist in various locations, they are often underutilized due to inadequate promotion or facilities. Given that drinking can lead to serious juvenile crimes, and there are indeed cases to this effect, preventive measures are absolutely necessary. Therefore, this paper analyzes the behavior of adolescents regarding drinking and smoking using public data. Based on the analysis conducted using R, a tool for big data analysis, this paper proposes measures to reduce the rates of adolescent drinking and smoking. The proposed measures focus more on prevention than on post-event solutions.