As the low fertility intensifies in Korea, this study investigated fundamental differences between the government's low fertility policy and public perception of it. To this end, we selected four times 'Aging Society and Population Policy' documents and news comments for two weeks immediately after announcement of the third and fourth Policy as analysis targets. Then we conducted word frequency analysis, co-occurrence analysis and CONCOR analysis. As a result of analyses, first, direct childcare support during the first and second periods, and a social structural approach during third and fourth periods were noticeable. Second, it was revealed that both policies and comments aim for the work-family compatibility in 'parenting'. Lastly it was showed public interest in environment of raising children and the critical mind to effectiveness of the policy. This study is meaningful in that it confirmed the public perception using big data analysis, and it will help improve the direction for the future low fertility policy.
Kim, Mun-Cho;Lee, Wang-Won;Lee, Hye-Soo;Suh, Byung-Jo
Informatization Policy
/
v.25
no.4
/
pp.37-64
/
2018
This study aims to forecast the future of the Korean society via a big data analysis. Based upon two sets of database - a collection of 46,000,000 news on 127 media in Naver Portal operated by Naver Corporation and a collection of 70,000 academic papers of social sciences registered in KCI (Korea Citation Index of National Research Foundation) between 2005-2017, 40 most frequently occurring keywords were selected. Next, their temporal variations were traced and compared in terms of number and pattern of frequencies. In addition, core issues of the future were identified through keyword network analysis. In the case of the media news database, such issues as economy, polity or technology turned out to be the top ranked ones. As to the academic paper database, however, top ranking issues are those of feeling, working or living. Referring to the system and life-world conceptual framework suggested by $J{\ddot{u}}rgen$ Habermas, public interest of the future inclines to the matter of 'system' while professional interest of the future leans to that of 'life-world.' Given the disparity of future interest, a 'mismatch paradigm' is proposed as an alternative to social forecasting, which can substitute the existing paradigms based on the ideas of deficiency or deprivation.
Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
The Journal of the Korea Contents Association
/
v.21
no.2
/
pp.121-129
/
2021
In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.
As the online education market expands, educational contents with various presentation methods are being developed and released. In addition, it is imperative to develop content that reflects the usability and user environment of users who use this educational content. However, for qualitative growth of contents that will support quantitative expansion of markets, existing model analysis methods are urgently needed at a time when development direction of newly developed contents is secured. In this process of content development, a typical model for setting development goals is needed, as the rules of the prototype affect the entire development process and the final development outcome. It can also provide a positive benefit that screens the issue of performance dualization between processes due to the absence of communication between a single entity or between a number of entities. In the case of AR-based educational content which is effective to secure data necessary for development by securing samples of similar categories because there are not enough ready-made samples released. Therefore, a big data statistical analysis service is needed that can easily collect data and make decisions using big data. In this paper, we would like to design analysis services that enable the selection and detection of intuitive multidimensional factors and attributes, and propose big data-based statistical analysis services that can assist cooperative activities within an organization or among many companies.
Purpose. The purpose of this study is to examine how the phrase "old person" are expressed and used in the online sphere. Based on the theoretical concept of stigma, this study investigates the images and attitudes in society toward the elderly, and the characteristics of hate speech aimed at the elderly. Method. This study conducted text mining based on social big data using anonymous conversations. Results. It was confirmed that the elderly images shared online were generally negative. The attitudes expressed toward them also tended to be negative due to the negative images that are propagated of the elderly. The hate speech relating to the elderly, in usages such as 'Teul-ttag' and 'Kon-dae', were mainly identified in comments that negatively evaluate the elderly, and these expressions demonstrate the depth of hate and discrimination towards the elderly who are considered burdensome by young people. Interestingly, the hateful expressions towards the elderly were found more with regard to issues related to politics and economics and not just any content about the elderly. Conclusions. This study discussed the ways and means to enhance inter-generational understanding and solidity.
The World Heritage Committee decided to make "cultural landscapes" a world heritage category in the 16th Session of the UNESCO General Conference. The decision was made from a recognition of the importance of interactions between human beings and the natural environment or between cultural heritage and natural heritage. Many countries have created policies and institutions to protect their own cultural landscapes along with the changing times. Korea, however, has not obviously defined the concepts and categories of its cultural landscapes, but manages policies and institutions based on the concept of a scenic spot, which has some similar meanings. In addition, it even borrows the "list of landscape adjectives," one of the representative methods for managing landscapes, from foreign countries. With this background, this paper suggested how to define cultural landscapes according to the global development flow. It created a list of cultural landscape adjectives by gathering the adjectives that can properly express local cultural landscapes in Korea. In particular, it collected 4,556 articles from a local newspaper by focusing on the case of Shinan-gun, Jeollanam-do, and analyzed key words and adjectives included in them by using big data analysis. The results suggested by this paper, such as the "classification table of cultural landscape types," "list of cultural landscape adjectives" and "network map of nouns/adjectives" can be applied to research on other localities, and furthermore, used as basic data for finding and protecting the characteristics of local cultural landscapes in Korea.
Now that climate change and food resource security are becoming issues around the world, smart farms are emerging as an alternative to solve them. In addition, changes in the production environment in the primary industry are a major concern for people engaged in all primary industries (agriculture, livestock, fishery), and the resulting food shortage problem is an important problem that we all need to solve. In order to solve this problem, in the primary industry, efforts are made to solve the food shortage problem through productivity improvement by introducing smart farms using the 4th industrial revolution such as ICT and BT and IoT big data and artificial intelligence technologies. This is done through the public and private sectors.This paper intends to consider the minimum requirements for the smart farm data collection system for the development and utilization of smart farms, the establishment of a sustainable agricultural management system, the sequential system construction method, and the purposeful, efficient and usable data collection system. In particular, we analyze and improve the problems of the data collection system for building a Korean smart farm standard model, which is facing limitations, based on in-depth investigations in the field of livestock and livestock (pig farming) and analysis of various cases, to establish an efficient and usable big data collection system. The goal is to propose a method for collecting big data.
Sun-Jin Lee;Tae-Rim Park;So-Hui Kim;Young-Eun Oh;Il-Gu Lee
Convergence Security Journal
/
v.22
no.4
/
pp.85-97
/
2022
With the development of big data technology, data is rapidly entering a hyperconnected intelligent society that accelerates innovative growth in all industries. The convergence industry, which holds and utilizes various high-quality data, is becoming a new growth engine, and big data is fused to various traditional industries. In particular, in the medical field, structured data such as electronic medical record data and unstructured medical data such as CT and MRI are used together to increase the accuracy of disease prediction and diagnosis. Currently, the importance and size of unstructured data are increasing day by day in the medical industry, but conventional data security technologies and policies are structured data-oriented, and considerations for the security and utilization of unstructured data are insufficient. In order for medical treatment using big data to be activated in the future, data diversity and security must be internalized and organically linked at the stage of data construction, distribution, and utilization. In this paper, the current status of domestic and foreign data security systems and technologies is analyzed. After that, it is proposed to add unstructured data-centered de-identification technology to the guidelines for unstructured data and technology application cases in the industry so that unstructured data can be actively used in the medical field, and to establish standards for judging personal information for unstructured data. Furthermore, an object feature-based identification ID that can be used for unstructured data without infringing on personal information is proposed.
As the global business environment is rapidly changing due to the 4th industrial revolution, new jobs that did not exist before are emerging. Among them, the job that companies are most interested in is 'Data Scientist'. As information and communication technologies take up most of our lives, data on not only online activities but also offline activities are stored in computers every hour to generate big data. Companies put a lot of effort into discovering new opportunities from such big data. The new job that emerged along with the efforts of these companies is data scientist. The demand for data scientist, a promising job that leads the big data era, is constantly increasing, but its supply is not still enough. Although data analysis technologies and tools that anyone can easily use are introduced, companies still have great difficulty in finding proper experts. One of the main reasons that makes the data scientist's shortage problem serious is the lack of understanding of the data scientist's job. Therefore, in this study, we explore the job competencies of a data scientist by qualitatively analyzing the actual job posting information of the company. This study finds that data scientists need not only the technical and system skills required of software engineers and system analysts in the past, but also business-related and interpersonal skills required of business consultants and project managers. The results of this study are expected to provide basic guidelines to people who are interested in the data scientist profession and to companies that want to hire data scientists.
Journal of the Korean Society for information Management
/
v.40
no.4
/
pp.429-450
/
2023
The purpose of this study is to examine recent trends and intellectual structures in research related to open data. To achieve this, the study conducted a search for the keyword "open data" in Scopus and collected a total of 6,543 papers from 1999 to 2023. After data preprocessing, the study focused on the author keywords of 5,589 papers to perform network analysis and derive centrality in the field of open data research and linked open data research. As a result, the study found that "big data" exhibited the highest centrality in research related to open data. The research in this area mainly focuses on the utilization of open data as a concept of public data, studies on the application of open data in analysis related to big data as an associated concept, and research on topics related to the use of open data, such as the reproduction, utilization, and access of open data. In linked open data research, both triadic centrality and closeness centrality showed that "the semantic web" had the highest centrality. Moreover, it was observed that research emphasizing data linkage and relationship formation, rather than public data policies, was more prevalent in this field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.