• Title/Summary/Keyword: BHN

Search Result 23, Processing Time 0.023 seconds

Anti-obesity and Anti-diabetes Effects of the Fermented White Jelly Fungus (Tremella fuciformis Berk) Using Lactobacillus rhamnosus BHN-LAB 76 (유산균을 이용한 흰목이 버섯의 발효를 통한 항비만과 항당뇨 효과)

  • Lee, Jun-Hyeong;Kim, Byung-Hyuk;Yoon, Yeo-Cho;Kim, Jung-Gyu;Park, Ye-Eun;Park, Hye-Suk;Hwang, Hak-Soo;Kwun, In-Sook;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.470-477
    • /
    • 2019
  • White jelly fungus (Tremella fuciformis Berk) is effective for hypertension, diabetes, obesity, lung disease, beauty, and has been known as an elixir of life in ancient Chinese dynasty. In this study, we investigated the anti-obesity and diabetic effects of the fermented white jelly fungus extract by the bioconversion process. We fed an obesity-inducing mouse with 5% non-fermented Tremella fuciformis (TF), 2.5% fermented Tremella fuciformis (FTF), and 5% FTF containing High Fats Diet (HFD) and HFD for 8 weeks, respectively. The oral glucose tolerance test (OGTT) was performed analysis after 7 weeks of feeding and the dietary intake, food efficiency ratio, body weight, liver, epididymal fat weight, and serum insulin level were measured after 8 weeks of feeding. Also, HOMA-IR was analyzed. The concentrations of serum total cholesterol, triglycerides test was analyzed. The FTF compare with 5% TF and HFD confirmed that 5% FTF reduced body weight, tissue weight, triglycerides concentration, HOMA-IR, respectively. As a result, we confirmed that the fermented white jelly fungus has the anti-obesity effect. Finally, this study can be used a basic data for obesity treatment using fermented white jelly fungus.

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.

A Study on the Formation, Contents of Foods, and Antioxidative Effect of Conjugated Linoleic Acid (Conjugated Linoleic Acid의 형성과 식품중의 함량 및 항산화효과에 관한 연구)

  • 안명수;우나리야
    • Korean journal of food and cookery science
    • /
    • v.14 no.1
    • /
    • pp.84-90
    • /
    • 1998
  • A research was carried out to determine the formation, contents in foods, and antioxidative effects of conjugated linoleic acid (CLA). CLA was known as a mixture of positional isomer of linoleic acid (LA), that was included in milk, meat, and fish. The formation of CLA from methyl linoleate and soybean oil (SBO) storecd at 20${\pm}$1$^{\circ}C$ was higher than at 40${\pm}$1$^{\circ}C$, and CLA formation from methyl linoleate stored at 20${\pm}$1$^{\circ}C$ was over 13 times higher than early amounts(188 ppm) and was higher than that from SBO. In edible vegetable oils, the content of CLA were the highest in canola oil (CAO, 348 ppm) but were decreased during storage at 40${\pm}$1$^{\circ}C$, while the content of CLA in cotton seed oil (CSO) were 292 ppm, which increased dramatically (1322 ppm) during 28 days of storage at 40${\pm}$1$^{\circ}C$. Because the peroxide value (POV) of CSO at that time was very low (10.05 meq/kg $.$ oil), CLA occurrence of CSO was shown to be very available during storage at temperature. CLA content of milk from a market ranged 293∼2148 ppm, which depended on the manufacturing, companies. In meat, the CLA content was very high in pork (2379 ppm), and among fishes, that of spanish mackerel was the highest (1040 ppm, almost same as beef, which increased greatly (2039 ppm) during boiling with seasoning. Antioxidative effect of CLA on SBO was almost same as that of BHT until 7 days of storage at 40${\pm}$1$^{\circ}C$, but decreased greatly after that period. In case of com oil (CNO), antioxidative effects of CLA were higher than those or BHN and tocopherol, suggesting that the effect was different depending on the kinds of oils used as substrates. During heating at 180${\pm}$1$^{\circ}C$, antioxidative effect of CLA on SBO appeared almost same as those or BHT and tocopherol, and it was also shown greater effects in heating at high temperature (180${\pm}$1$^{\circ}C$) than at low temperature(40${\pm}$1$^{\circ}C$).

  • PDF