• Title/Summary/Keyword: BEM 해석법

Search Result 145, Processing Time 0.025 seconds

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine (고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-144
    • /
    • 1998
  • The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body problem which also involves the thermoelastic effects due to steady-state thermal conduction. The axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the volume integrals associated with such body force kernels into equivalent boundary integrals is described in a way of using the concept of inner product and vector identity. A discretization scheme for higher order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is consequently illustrated by determining the stress distributions of the turbine rotor disk of the small turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

  • PDF

An Application of 2-D BEM with Laplace Transformation to Impact Crack Analysis (균열의 충격해석에 대한 Laplace 변환 2차원 경계요소법의 응용)

  • 조상봉;김태규;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.883-890
    • /
    • 1992
  • Analysis of dynamic or impact problems is very important in engineering fields such as airplanes and automobiles. In the present study, two-dimensional elastodynamic BEM program with Laplace transformation is developed to analyze dynamic or impact problems. Accuracy and efficiency of the BEM program are tested by making the comparision of impact analysis of some models with other's published results. The BEM developed is applied to the impact crack problem and the dynamic stress intensity factors of some impact cracks is obtained by the displacement extrapolation method. It is confirmed to be possible to analyze impact problems accurately with only a little elements in simple models. And also it is found to be careful to use the singular element usually using in static crack problems because that the elastodynamic fundamental solution usually using in static crack problems because that the elastodynamic fundamental solution has more sensitive singularity than the static fundamental solution and to determine the boundary conditions in dynamic problems.

Performance Analysis of Axisymmetric Mufflers by BEM (경계요소법을 이용한 축대칭 소음기의 성능해석)

  • 임정빈;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.184-189
    • /
    • 1995
  • 자동차 흡배기계의 음향성능 해석에 일반적으로 사용되고 있는 방법은 평면과 이론에 의한 1차원적인 해석방법이다. 그러나 관심 주파수 대역이 높거나 대상물의 형상이 복잡한 경우, 또는 내부에 흡음재가 부착되어 있는 경우에는 이러한 1차원 해석으로는 만족할만한 결과를 얻을 수 없으므로 경계요소법(BEM), 유한요소법(FEM) 등과 같은 수치해석 방법이 이용되고 있다. 본 연구에서는 축대칭 단순팽창형, 연장관형, 다공형등 반사형 소음기와 흡음형 소음기의 음향성능을 해석하기 위한 경계요소법 프로그램을 개발하고, 소음기 성능의 주파수 특성을 구하여 실험결과 및 1차원 해석 결과와 비교 고찰하였다.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yamashiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.853-858
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation have been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use this method for calculations in the case of random waves because long and stable computation (e.g for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand if the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, can be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes' 5th order wave propagation and a random wave propagation.

Three-dimensional analysis of the mufflers by BEM (경계요소법에 의한 소음기의 3차원 해석)

  • 윤제원;임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.19-24
    • /
    • 1995
  • 단순한 형상의 소음기는 평면파이론에 의해 비교적 간단하게 음향성능을 해석적으로 구할 수 있다. 그러나 소음기의 형상이 복잡해지거나 해석하고자 하는 주파수의 범위가 평면파의 차단주파수 이상이 될 경우 소음기 내부의 음장이 평면파에서 벗어나게 되어 평면파 이론에 의한 해석은 실제와 상당한 오차가 발생하게 되므로 음장에 대한 3차원 해석이 필요하다. 이론적으로 3차원 문제를 해석할 수 있는 경우는 형상이 극히 단순한 경우에 국한되므로 유한요소법(FEM), 경계요소법(BEM)과 같은 수치해석적인 방법이 이용되고 있다. 경계요소법은 적분 커넬(kernel)의 특이성(singularity) 문제가 있지만 대상 영역의 경계면만을 이산화함으로써 모델링에 소요되는 시간과 노력을 절약할 수 있으므로 음향문제 해석에 있어서 효율적인 방법이라고 할 수 있다. 본 연구의 목적은 3차원 경계요소법 프로그램을 개발하고 평면파이론에 의한 해석이 어려운 여러가지 형태의 소음기에 대한 음향성능을 예측하고 실험으로 검증하는것이다. 특히, 단일영역으로 해석이 불가능한 다공형 소음기에 영역분할법을 적용하여 계산하고 결과를 검토하였다.

  • PDF

Performance analysis of the axisymmetric mufflers by BEM (BEM을 이용한 축대칭 소음기의 성능해석)

  • 임정빈;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.306-311
    • /
    • 1994
  • 본 연구에서는 축대칭 형태의 음향문제를 해석할 수 있는 경계요소 프로그램을 개발하여 소음기의 투과손실(transmission loss)의 계산에 적용하였다. 우선 단순팽창관 소음기에 대해서는 경계요소법에 의해 투과손실을 구한 후 평면파이론 및 실험으로 구한 값과 비교 평가하였다. 또한, 평면파이론을 적용할 수 없는 경우로서 흡음재를 부착한 팽창관 소음기에 대해서는 경계요소법으로 구한 투과손실을 실험결과와 비교 고찰하였다.

  • PDF