• 제목/요약/키워드: B4C grain

검색결과 341건 처리시간 0.02초

$B_4C-SiC$ 복합체의 상압소결거동 (Sintering Behavior of $B_4C-SiC$ Composite)

  • 김득중;강을손
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

Reaction Synthesis and Mechanical Properties of $B_4C$-based Ceramic Composites

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1080-1081
    • /
    • 2006
  • In this investigation, $B_4C$ based ceramic composites were fabricated by in-situ reaction hot pressing using $B_4C$, TiC SiC powder as starting materials. The reaction synthesized composites by hot pressing at $1950^{\circ}C$ was found to posses very high relative density. The reaction synthesized $B_4C$ composites comprise $B_4C$, $TiB_2$, SiC and graphite by the reaction between TiC and $B_4C$. The newly formed $TiB_2$ and graphite was embedded both inside grain and at grain boundary $B_4C$. The mechanical properties of reaction synthesized $B_4C-TiB_2-SiC$-graphite composites were more enhanced compared to those of monolithic $B_4C$.

  • PDF

방전플라즈마 소결 공정을 이용한 WC-Co-B4C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-B4C Hard Materials by a Spark Plasma Sintering Process)

  • 이정한;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.397-402
    • /
    • 2021
  • In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m-2, prismatic direction: 1.43 ~ 3.02 J·m-2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.

가연성독극물로서 $SiB_4$를 첨가한 이산화우라늄의 소결특성 (Sintering Charateristics of $UO_2$ with Addition of $SiB_4$ as Burnable Poison)

  • 윤영수;윤용구;박지연;강영환
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.767-776
    • /
    • 1991
  • Effects of the additions of SiB4 as burnable poison to UO2 on the green density, densification, interdependence between density-grain growth and microstructure of sintered UO2 were studied. UO2 pellets were sintered in flowing hydrogen, at temperature 1200, 1350, 1500, and 168$0^{\circ}C$ for 3 hours and at 168$0^{\circ}C$ for 0, 1, 3, and 10 hours, respectively. Green densities were in the range of about 4.5~5.4 g/㎤, and decreased as the amount of SiB4 increased when green pellets were made by with use of a double action press at 1000 kg/$\textrm{cm}^2$. The density of sintered UO2 pellets was around 92~94% of the theoretical density and did not change significantly as the amount of SiB2 addition increased. However, the density of sintered pellets decreased with the increase in SiB4. The grain growth could be characterized in terms of two stages: Grain growth occurred with the increasing density in the first stage, whereas the second stage was characterized by the grain growth without increasing of density. A liquid phase was observed at grain boundaries and grain edges in the microstructure of sintered UO2 pellets with 5000 ppm and 10,000 ppm SiB4. This liquid, possible formed at about 168$0^{\circ}C$, did not enhance the shrinkage, but appeared to accelarate the grain growth. It seems that the second stage grain growth was due to the presence of pressurized insoluble trapped gas in isolated pores.

  • PDF

A STUDY OF MAGNETIC ALIGNMENT OF DIE-UPSET Pr-Fe-B-Cu MAGNETS

  • Kwon, H.W.;Ma, T.J.;Harris, I.R.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.416-420
    • /
    • 1995
  • An attempt has been made to investigate the mechanism of magnetic alignment in the magnets produced by upset forging the $Pr_{20}Fe_{74}B_{4}Cu_{2}$ cast bulk alloy. Upset forging of the cast alloy was carried out for 20 sec to an 80 % thickness reduction (strain rate : $4{$\times}10^{-2}s^{-1}$) in an open die configuration at varying temperatures in the range $600^{\circ}-900^{\circ}C$. It has been found that the upset forging process at temperatures above $800^{\circ}C$ can achieve a magnetic alignment to a great extent from copper-containing Pr-Fe- B-type cast ingot. The growth manner of the ferromagnetic $Pr_{2}Fe_{14}B$ matrix grain in Pr-Fe-B-type alloys was studied by examining the morphology change of the matrix grain in sintered body, and it was found that the matrix grains grew in anisotropic manner such that the grain grew more rapidly along the a- or b-axis than along the c-axis. This anisotropic grain growth led to the plate-like shape of the matrix grain. The magnetic alignment during the upset forging was attributed to grain boundary gliding of the plate-like grains, and the geometry of the grains in the cast ingot and the presence of a large amount of the praseodymium-rich grain boundary phase were thought to play a key role in the achievement of magnetic alignment.

  • PDF

Ti-B 첨가(添加)에 의한 Al 의 응고조직(凝固組織)에 관(關)한 연구(硏究) (The Effects of Ti-B Addition on the Unidirectional Solidification of Al)

  • 성연수;이계완
    • 한국주조공학회지
    • /
    • 제7권4호
    • /
    • pp.358-365
    • /
    • 1987
  • To investigate the grain refining mechanism of Al by the addition of Ti-B, the unidirectional solidifications of 99.9%Al and 99.7%Al were performed under the condition of varing the pouring temperature. The solidification modes of Al were studied by the cooling curve analyses, metallographic and microprobe examinations. The results were as follows: 1) Grains were most refined with an addition of 0.15wt.%Ti-0.021wt.%B but the grain size with 0.2wt.%Ti-0.028wt.%B was increased. 2) The grain size of 99.7wt.%Al was even more refined than that of 99.9wt.%Al with the same amount of Ti-B. 3) As the pouring temperature increased, the grain size of pure Al and an alloy with 0.lwt.%Ti-0.014wt.%B was increased. However, an alloy with 0.2wt.%Ti-0.028wt.%B did not show any effects of temperature. 4) TiC(Al-Ti) and (Al-Ti-C) were identified as nucleants for Al.

  • PDF

Enhanced critical current density of in situ processed MgB2 bulk superconductors with MgB4 additions

  • Kim, S.H.;Kang, W.N.;Jun, B.H.;Lee, Y.J.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2017
  • The effects of $MgB_4$ addition on the superconducting properties and the microstructure of in situ processed $MgB_2$ bulk superconductors were studied. $MgB_4$ powder of 1-20 wt.% was mixed with (Mg + 2B) powder and then pressed into pellets. The pellets of (Mg + 2B + $xMgB_4$) were heat-treated at $650^{\circ}C$ for 1 h in flowing argon. The powder X-ray diffraction (XRD) analysis for the heat-treated samples showed that the major formed phase in all samples was $MgB_2$ and the minor phases were $MgB_4$ and MgO. The full width at half maximum (FWHM) values showed that the grain size of $MgB_2$ decreased as the amount of $MgB_4$ addition increased. $MgB_4$ particles included in a $MgB_2$ matrix is considered to suppress the grain growth of $MgB_2$. The onset temperatures ($T_{c,onset}$) of $MgB_2$ with $MgB_4$ addition (0-10 wt.%) was between 37-38 K. The 20 wt.% $MgB_4$ addition slightly reduced the $T_{c,onset}$ of $MgB_2$ to 36.5 K. This result indicates that $MgB_4$ addition did not influence the superconducting transition temperature ($T_c$) of $MgB_2$ significantly. On the other hand, the small additions of 1-5 wt.% $MgB_4$ increased the critical current density ($J_c$) of $MgB_2$. The $J_c$ enhancement by $MgB_4$ addition is attributed not only to the grain size refinement but also to the possible flux pinning of $MgB_4$ particles dispersed in a $MgB_2$ matrix.

Magnetic levitation properties of single- and multi-grain YBCO bulk superconductors

  • Kim, C.J.;Yang, A.Y.;Lee, S.H.;Jun, B.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.52-56
    • /
    • 2022
  • Single-grain (c-normal or c-parallel) and multi-grain YBCO superconductors were prepared by a melt growth process with/without seeding. The magnetic levitation force and trapped magnetic field at liquid N2 temperature (77 K) of the YBCO superconductors were investigated. Samples for the levitation force measurement were zero-field cooled (ZFC) to 77 K, and samples for trapped field measurement were field-cooled (FC) using Nd magnets. As for the magnetic levitation force, the c-normal, single grain sample showed the largest value, whereas the multi-grain sample showed the lowest value. The trapped magnetic field of the c-normal and c-parallel single-grain samples was 4-5 times that of the multi-grain sample. In addition, as the external magnetic field (the number of magnets) increased, the both properties increased proportionally. These results were explained in terms of the orientation dependence of the levitation forces and the magnetic field trapping capability of the YBCO superconductor.

알루미늄의 결정입자 미세화에 미치는 AlTi5B1 첨가의 영향 (The Effects of AlTi5B1 Additions on the Grain Refinement of Aluminium)

  • 김정근
    • 한국주조공학회지
    • /
    • 제9권4호
    • /
    • pp.320-326
    • /
    • 1989
  • Titanium-Boron-Aluminium master alloys are used extensively to grain-refine a wide range of aluminium alloys. This experiment was performed by various amounts of AlTi5B1 addition to the technical aluminium alloys, and also by changing cast temperature and hold time of the melts. The macrostructures were shown that with increasing the addition of AlTi5B1 to the melts, the grain became finer. In the case of cast temperature high enough over $900^{\circ}C$, the grain became coarser, but hold time change not affected on the grain refinement. Particles of $TiAl_3$, and $TiB_2$ were found in the grains and grainboundaries. The important role of grain refinement in this experiment were mainly $TiAl_3$, and also $TiB_2$ those have been confirmed in TEM, SEM, EDS, WDX and X-ray diffraction.

  • PDF

Cryogenic milling for the fabrication of high Jc MgB2 bulk superconductors

  • Kim, D.N.;Kang, M.O.;Jun, B.H.;Kim, C.J.;Park, H.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.19-24
    • /
    • 2017
  • Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density $(J_c)MgB_2$ bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg ($6-12{\mu}m$, 99.9 % purity) and plate-like B powder (${\sim}1{\mu}m$, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using $ZrO_2$ balls. The (Mg+2B) powders milled were pressed into pellets and heat-treated at $700^{\circ}C$ for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting $MgB_2$, reduced the grain size of $MgB_2$, and suppressed the formation of impurity MgO. The superconducting critical temperature ($T_c$) of $MgB_2$ was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density ($J_c$) of $MgB_2$ increased significantly when t increased to 4 h. When t increased further to 6 h, however, $J_c$ decreased. The $J_c$ enhancement of $MgB_2$ by cryogenic milling is attributed to the formation of the fine grain $MgB_2$ and a suppression of the MgO formation.