DOI QR코드

DOI QR Code

Cryogenic milling for the fabrication of high Jc MgB2 bulk superconductors

  • Kim, D.N. (Korea University of Technology and Education) ;
  • Kang, M.O. (Korea University of Technology and Education) ;
  • Jun, B.H. (Korea Atomic Energy Research Institute) ;
  • Kim, C.J. (Korea Atomic Energy Research Institute) ;
  • Park, H.W. (Korea University of Technology and Education)
  • Received : 2017.05.06
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density $(J_c)MgB_2$ bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg ($6-12{\mu}m$, 99.9 % purity) and plate-like B powder (${\sim}1{\mu}m$, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using $ZrO_2$ balls. The (Mg+2B) powders milled were pressed into pellets and heat-treated at $700^{\circ}C$ for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting $MgB_2$, reduced the grain size of $MgB_2$, and suppressed the formation of impurity MgO. The superconducting critical temperature ($T_c$) of $MgB_2$ was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density ($J_c$) of $MgB_2$ increased significantly when t increased to 4 h. When t increased further to 6 h, however, $J_c$ decreased. The $J_c$ enhancement of $MgB_2$ by cryogenic milling is attributed to the formation of the fine grain $MgB_2$ and a suppression of the MgO formation.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63, 2001. https://doi.org/10.1038/35065039
  2. A. V. Pan, S. Zhou, H. Liu and S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003. https://doi.org/10.1088/0953-2048/16/5/317
  3. B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. Mcdougall. "Superconductivity of powder-in-tube $MgB_2$ wires," Supercond. Sci. Technol., vol 14, pp. 193-199, 2001. https://doi.org/10.1088/0953-2048/14/4/304
  4. E. Martinez, L. A. Angurel and R. Navarro, "Study of Ag and Cu/$MgB_2$ powder-in-tube composite wires fabricated by in situ reaction at low temperature," Supercond. Sci. Technol., vol. 15, pp. 1043-1047, 2002. https://doi.org/10.1088/0953-2048/15/7/309
  5. B. H. Jun and C. J. Kim. "The effect of heat-treatment temperature on the superconducting properties of malic acid-doped $MgB_2$/Fe wire," Supercond. Sci. Technol., vol. 20, pp. 980-985, 2007. https://doi.org/10.1088/0953-2048/20/10/015
  6. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007. https://doi.org/10.1088/0953-2048/20/5/007
  7. A. Yamamoto, J. I. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, "Improved critical current properties observed in $MgB_2$ bulk synthesized by low-temperature solid-state reaction," Supercond. Sci. Tehchnol., vol. 18, pp. 116-121, 2004.
  8. C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo, "Reaction-induced pore formation and superconductivity in in situ processed $MgB_2$ superconductors," Physica C, vol. 502, pp. 4-9, 2014. https://doi.org/10.1016/j.physc.2014.04.006
  9. G. S. Brady and H. R. Clauser, Materials Handbook, 12th ed., vol. 15. McGraw-Hill, 1956, pp. 104-105.
  10. W. Goldacker, S. I. Schlachter, B. Obst and M. Eisterer. "In-situ $MgB_2$ round wires with improved properties," Supercond. Sci. Technol., vol. 17, pp. S490-495, 2004. https://doi.org/10.1088/0953-2048/17/9/006
  11. D. N. Kim, B. -H. Jun and S. -D. Park, "Effects of the size of Mg powder on the formation of $MgB_2$ and the superconducting properties," Prog. Supercond. Cryo., Korea, vol. 18, pp. 9-14, 2016. https://doi.org/10.9714/psac.2016.18.4.009
  12. B. -H. Jun, N. -K. Kim, K. S. Tan and C. -J. Kim, "Enhanced critical current properties of in situ processed $MgB_2$ wires using milled boron powder and low temperature solid-state reaction," J. Alloys Compd., vol. 492, pp. 446-451, 2010. https://doi.org/10.1016/j.jallcom.2009.11.134
  13. X. Xu, J. H. Kim, W. K. Yeoh, Y. Zhang and S. X. Dou, "Improved $J_c$ of $MgB_2$ superconductor by ball milling using different media," Supercond. Sci. Technol., vol. 19, pp. L47-50, 2006. https://doi.org/10.1088/0953-2048/19/11/L01
  14. B. -H. Jun, Y. -J. Kim, K. S. Tan and C. -J. Kim, "Effective carbon incorporation in $MgB_2$ by combining mechanical milling and the glycerin treatment of boron powder," Supercond. Sci. Technol., vol. 21, pp. 105006, 2008. https://doi.org/10.1088/0953-2048/21/10/105006
  15. J. Lee, F. Zhou, K. H. Jung, N. J. Kim and E. J. Lavernia, "Grain growth of nanocrystalline Ni powder prepared by cryomilling," Metall. Mater. Trans., vol. 32A, pp. 3109-3115, 2001.
  16. P. Scherrer, "Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen," Nachr. Ges. Wiss. Gottingen, vol. 26, pp. 98-100, 1918.
  17. C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., vol. 36, pp. 31-39, 1964. https://doi.org/10.1103/RevModPhys.36.31
  18. C. J. Kim, H. G. Lee, D. Y. Wong and H. S. Shin, "Expansion of Bi-Sr-Ca-Cu-O pellets," Mater. Sci. Eng. B, pp. 501-505, 1989.
  19. C. J. Kim, S-J. L. Kang and D.-Y. Won, "Compact swelling in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_y$ during the formation of high-$T_c$ superconducting phase," J. Am. Ceram. Soc., vol. 75, pp. 570-574, 1992. https://doi.org/10.1111/j.1151-2916.1992.tb07844.x
  20. J. H. Yi , K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim , J. Joo and C. J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp.1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190
  21. C. F. Liu, G. Yan, S. J. Du, W. Xi, Y. Feng, P. X. Zhang, X. Z. Wu and L. Zhou, "Effect of heat-treatment temperatures on density and porosity in $MgB_2$ superconductor," Physica C, vol. 386, pp. 603-606, 2003. https://doi.org/10.1016/S0921-4534(02)02170-6
  22. J. H. Kim, S. X. Dou, D. Q. Shi, M. Rindfleisch and M. Tomsic, "Study of MgO formation and structural defects in in situ processed $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 1026-1031, 2007. https://doi.org/10.1088/0953-2048/20/10/023
  23. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii and K. Kishio, "Effects of $B_4C$ doping on critical current properties of $MgB_2$ superconductor," Supercond. Sci. Technol., vol. 18, pp. 1323-1328, 2005. https://doi.org/10.1088/0953-2048/18/10/012