• Title/Summary/Keyword: B10 수명

Search Result 279, Processing Time 0.02 seconds

Estimation of Shelf Life for Propellant KM6 by Using Gamma Process Model (감마과정 모델을 이용한 KM6 추진제의 저장수명 예측)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • The aim of the study is to investigate the method to estimate a shelf life of KM6 single base propellant by stochastic gamma process model. The state failure level is assumed that the degradation content of stabilizer is below 0.8%. The constant of time dependent shape function and the scale parameter of stationary gamma process are estimated by moment method. The state distribution at each storage time can be shown from probability density function of deterioration. It is estimated that the $B_{10}$ life, a time at which the cumulative failure probability is 10%, is 25 years and the $B_{50}$ life is 36 years from cumulative failure distribution function curve. The $B_{50}$ life can be treated as the average shelf life from the practical viewpoint and the lifetime can be expressed as distribution curve by using stochastic process theory.

The study on Accelerated Life-Time Reliability Test Methods of Ni-Mn-B ternary alloy Plating(electrodeposit) (Ni-Mn-B 삼원합금도금 가속수명 및 신뢰성 평가에 대한 연구)

  • Ma, Seung-hwan;Noh, young-tai;Jang, gun-ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2993-2999
    • /
    • 2015
  • Steel companies are applying Ni-B or Ni-Co alloy plating to protect the surface of Continuous casting mold, and they are using saccharin polish which causes crack on plating layer due to sulfur in saccharin. It is considered that the Ni-S compound causes the cracking and additional tensile stresses. The Ni-Mn-B ternary alloy plating was developed for suppression of crack by forming Mn-S compound before Ni-S compound is formed, but there were no domestic or international standard on the Ni-Mn-B alloy plating. Therefore, reliability evaluation standard was established to evaluate the newly developed Ni-Mn-B plating. To develop accelerating life testing method, FMEA(Failure Mode & Effective analysis) was used to analyze the cause of the main failure in plating. The Ni-Mn-B reliability standard included accelerating life test method, and it was categorized by the fundamental performance test, environment test, and accelerated life test, and was designed to guarantee 1 000 hours of B10 life with 80 % reliable level.

Estimation of Storage Life for Propellant Bag by Using Gamma Process Model (감마과정 모델에 의한 장약포의 저장수명 예측)

  • Park, Sungho;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.17-25
    • /
    • 2014
  • The purpose of this paper is to present a method to estimate the storage life of propellant bag for degradation of breaking load with storage time by using gamma process model. The nitrogen compound generated by natural decomposition of propellants degrades the breaking load of propellant bag with time. The statistical distributions of condition and lifetime with time were shown from the results of accelerated life test of propellant bag cloth at $80^{\circ}C$. It was found that the use of median for life was highly appropriate and the $B_1$ or $B_5$ life should be selectively applied to the quality assurance policy.

Lifetime Prediction of Acrylic Resin for Metal Artifacts Reinforcement (금속유물 강화용 아크릴수지 수명예측)

  • Gwak, Hongin;Kim, Jinkuk
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.75-88
    • /
    • 2009
  • The purpose of this study is to determine the lifetime of acrylic resin ParaloidTM B-72(EMA copolymer), which is widely used as a coating for metallic artifacts to prevent corrosion. Lifetime factor with temperature, selected chromaticity as the test parameter for lifetime prediction. The found result is that the temperature is the most crucial factor influencing the prediction of the lifetime of the EMA copolymer coated iron surface against corrosion. The simulation results, based on Arrhenius Equation, showed that the lifetime prediction of the EMA coated iron surface was 24.5 years at 16℃, 17.1 years at 20℃, and 12.0 years at 24℃, respectively.

Lifetime Prediction of RF SAW Duplexer Using Accelerated Life Testing (가속수명시험을 이용한 RF SAW 듀플렉서의 수명예측)

  • Kim, Young-Goo;Kim, Tae-Hong;Kang, Sang-Gee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.616-618
    • /
    • 2014
  • In this paper, we designed the accelerated life testing(ALT) and presented the lifetime prediction method of the RF SAW duplexer. We determined RF input power as an accelerated stress when designing an accelerating life testing and defined the lifetime of the duplexer as the period during which the insertion loss increased by 0.5[dB]. Lifetime prediction results of duplexer was estimated for 82,900hours at an ambient temperature of $85^{\circ}C$ and RF input power of 30[dBm].

Life and Performance Degradation Characteristics for Small-Sized Plug-In Type Pneumatic Manifold Valves (플러그인형 소형 공기압 매니폴드 밸브의 수명 및 성능열화특성에 관한 연구)

  • Kang, Bo-Sik;Lee, Choong-Sung;Kim, Hyoung-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1445-1451
    • /
    • 2011
  • Pneumatic valves are widely used parts that have the ability to control the air supplied to automation systems. However, if failure occurs in a pneumatic valve, it may affect the entire system and could lead to huge losses, depending on the characteristics of the system at the time of failure. Because of this significant risk and the level of consumer demand for reliability, there has been much study on ensuring the reliability of products by predicting valve lifetime distributions and degradation characteristics. In this paper, in order to determine the main factors useful for predicting the lifetime of a pneumatic valve, the scale parameter and $B_{10}$ life time value of the widely used plug-in-type pneumatic manifold valves were measured using complete observational data on the valve lifetimes. And also the property of life distribution has been distribution-suitabilityreviewed by correlation coefficients, the degradation characteristics of valve has been presented by the result of analysis through dynamic response time test and leakage test.

자동차 안전벨트용 $Rukaflex^{(R)}$ 웨빙의 구조개선을 통한 마모특성 및 수명 향상

  • Gu, Hyeon-Jin;Kim, Yu-Gyeom
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.381-383
    • /
    • 2006
  • 최근, 선진국에서는 $Rukaflex^{(R)}$라는 새로운 구조의 웨빙을 개발하여, normal usage marks를 감소시키고, 웨빙의 품질을 향상시키려는 경향을 보인다. 기존의 웨빙은 멀티 필라멘트가 경/위사 방향으로 교차되는 구조를 갖는 소폭직물인데, 새로운 구조의 $Rukaflex^{(R)}$는 위사방향에 멀티 필라멘트와 모노 필라멘트를 동시에 사용하여 탄성률(resilience)을 높여서 구조 안정성을 항상시킨 형태의 웨빙이다. 본 연구에서는 $Rukaflex^{(R)}$ 웨빙의 수명을 구조개선 및 마모특성 향상을 통하여 50% 이상 향상시켰는데, 기존 웨빙과 초기 인장강도에서는 차이가 나지 않았으나 활성화 에너지, 형상모수, $B_{10}$ 수명이 증가한 것을 확인할 수 있었다. 이는, 척도모수에서는 기존 웨빙과 근소한 차이를 보이나 구조개선에 의한 마모특성 향상에 의하여, 균일한 마모 및 degradation 특성을 나타내므로, $B_{10}$ 수명이 향상된 것을 확인할 수 있었다.

  • PDF

Accelerated Life Testing and Validity Evaluation of Finger Strips Used for Electromagnetic Shielding Doors (전자파 차폐 도어용 핑거 스트립의 가속수명시험 및 유효성 평가)

  • Lee, Joo Hong;Kim, Do Sik;Chang, Mu Seong;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.831-837
    • /
    • 2015
  • Many persons and electronic devices are exposed to electromagnetic (EM) waves generated from magnetic resonance imaging (MRI) equipment, EM pulses (EMPs), and many other kinds of EM wave devices. Finger strips are used to provide shielding from these EM waves. Because of the high thermal conductivity of finger strips, they are used in the design of specialized doors that are installed in shielded rooms. In this study, we perform an accelerated life test using the load acceleration stress, which affects the main failure mode of finger strips. We predict the life of the finger strip under normal usage conditions based on the results of the accelerated life test. We compare the results with those predicted from the life test under normal usage conditions to evaluate the validity of accelerated life testing.

Lifetime Estimation of a Bluetooth Module using Accelerated Life Testing (가속수명시험을 이용한 블루투스 모듈의 수명 예측)

  • Son, Young-Kap;Chang, Seog-Weon;Kim, Jae-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • This paper shows quantitative reliability evaluations of a Bluetooth module through extending previous qualitative methods limited to structure reliability tests and solder joint reliability tests for Bluetooth modules. Accelerated Life Testing (ALT) of the modules using temperature difference in temperature cycling as an accelerated stress was conducted for quantitative reliability evaluation under field environment conditions. Lifetime distribution parameters were estimated using the failure times obtained through the ALT, and then Coffin-Manson model was implemented. Results of the ALT showed that the failure mode of the modules was open and the failure mechanisms are both crack and delamination. The ALT reproduced the failure mode and mechanisms of failed Bluetooth modules collected from the field. Further, a quantitative reliability evaluation method with respect to various temperature differences in temperature cycling was proposed in this paper. $B_{10}$ lifetime of the module for the temperature difference $70^{\circ}C$ using the proposed method would be estimated as about 4 years.

  • PDF

A Correlation Analysis of the Relationship Between Walking and Lifespan (걷기와 수명 연관성에 대한 상관관계 분석)

  • Min An;Bong-Hyun Kim
    • Journal of Digital Policy
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2024
  • The purpose of this study is to analyze the correlation between walking time and lifespan across individuals of various ages and weights to validate the health benefits of walking exercise. The research utilized Python and related libraries to collect and preprocess data, and then analyzed the relationship between walking time and lifespan using Pearson's correlation coefficient. The study was conducted over a period of six months. The analysis results showed a trend towards increased lifespan with longer walking times, which was similarly observed in data using vitamin B2 and folate intake as surrogate variables. These findings suggest that walking exercise may have a positive impact on health and lifespan, and can be used as foundational data for the development of personalized health management services and related policy formulation.