• Title/Summary/Keyword: B Coefficient

Search Result 2,863, Processing Time 0.268 seconds

A study on wideband strip-line balun using a power divider and a phase converter (전력 분배기와 위상 변환기를 이용한 광대역 스트립라인 발룬에 관한 연구)

  • Lee, Chang-Seok;Park, Ung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1160-1164
    • /
    • 2008
  • This paper presents an wideband stripline balun. And, the proposed balun is composed of one power divider and two phase converters on stripline substrate. The target characteristics of the proposed balun is the combination loss of below -0.05 dB, an amplitude imbalance of ${\pm}0.5\;dB$ and a phase imbalance of $180{\pm}10$ degrees, with the reflection coefficient(S11) of below -10 dB over frequencies ranging from 500 to 1500 MHz. The fabricated balun occupies the area of $12(W){\times}220(L){\times}2.3(T)\;mm3$. Experimental measurement shows that the fabricated balun has an amplitude imbalance of ${\pm}0.7\;dB$, a phase imbalance of $180{\pm}8$ degrees and an insertion loss of about -2 dB with the reflection coefficient(S11) of below -10 dB over frequencies ranging from 500 to 1,500 MHz.

Minimization of Friction and Wear Damage of Marine Structures by Using the Advanced Anti-corrosive Composite Materials (첨단복합방식재를 이용한 각종 선박구조물의 마찰마모손상의 최소화)

  • 김윤해;김진우
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.15-26
    • /
    • 1999
  • The marine structures with sea water cooling system always expose to the oceanic atmosphere. Therefore, the protection of the equipments is very important. To investigate the effectiveness of advanced composite materials for the application in offshore environments, the tensile test, hardness test, undercutting property test, permeance test and the friction and wear test were carried out by using various applicable coating materials. The main results obtained can be summarized as follows; 1. The micro-hardness of the Archcoat 502B showed the highest value. 2. The coefficient of friction of the Rigspray coating at the speed of 2.21m/sec showed the lowest value, and that of the Archcoat 502B coating at 1.08m/sec and 0.18m/sec indicated the lowest values. 3. The wear mass at the speed of 0.18m/sec and 1.08m/sec in dry condition showed the smallest values. 4. The Archcoat 502B coating is fitted to the dynamic instruments in the range of low speed and middle speed. Rigspray coating is fitted to the dynamic instruments in the range of high speed. 5. The wear mass of five kinds of coating materials at the range of low speed was very small, and those of the Archcoat S02B, Archcoat 402B and Rigspray coating at high speed range were quitely smaller than those of the Modified Epoxy and Tar Epoxy.

  • PDF

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..

A 2 GHz 20 dBm IIP3 Low-Power CMOS LNA with Modified DS Linearization Technique

  • Rastegar, Habib;Lim, Jae-Hwan;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The linearization technique for low noise amplifier (LNA) has been implemented in standard $0.18-{\mu}m$ BiCMOS process. The MOS-BJT derivative superposition (MBDS) technique exploits a parallel LC tank in the emitter of bipolar transistor to reduce the second-order non-linear coefficient ($g_{m2}$) which limits the enhancement of linearity performance. Two feedback capacitances are used in parallel with the base-collector and gate-drain capacitances to adjust the phase of third-order non-linear coefficients of bipolar and MOS transistors to improve the linearity characteristics. The MBDS technique is also employed cascode configuration to further reduce the second-order nonlinear coefficient. The proposed LNA exhibits gain of 9.3 dB and noise figure (NF) of 2.3 dB at 2 GHz. The excellent IIP3 of 20 dBm and low-power power consumption of 5.14 mW at the power supply of 1 V are achieved. The input return loss ($S_{11}$) and output return loss ($S_{22}$) are kept below - 10 dB and -15 dB, respectively. The reverse isolation ($S_{12}$) is better than -50 dB.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

Flow Characteristics of Two Types of Overhung Compressor Volute for Automobile Turbocharger (자동차용 터보차저의 오버헝 압축기 볼류트의 두 형태에 대한 유동장 특성)

  • Tianjun, Zhou;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The flow characteristics of two types of overhung compressor volutes for automobile turbochargers were analyzed numerically using commercial software. For obtaining high performance from a volute, it is necessary that the volute have a high pressure recovery coefficient and a low loss coefficient. We investigated the flow characteristics of two types of overhung compressor volutes with a fixed diffuser inlet angle of $24^{\circ}$ and a mass flow rate of 0.055 kg/s. The first type is a volute with one-arc cross section (type 1) and the second type is with three-arc cross section (type 2). Our results showed that between the two types of volutes, type 2 had the higher pressure recovery coefficient and the lower loss coefficient along the entire angular position.

A study on the pressure loss coefficient of non-Newtonian fluids in the stenotic tubes (비뉴턴 유체의 협착관내 압력손실계수에 관한 연구)

  • Seo, Sang-Ho;Yu, Sang-Sin;Jang, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1603-1612
    • /
    • 1996
  • The pressure loss coefficient of Newtonian and non-Newtonian fluids such as water, aqueous solutions of Carbopol-934 and Separan AP-273 and blood in the stenotic tubes are determined experimentally and numerically. The numerical analyses for flows of non-Newtonian fluids in the stenotic tubes are conducted by the finite element method. The effect of the contraction ratio and the ratio of length to diameter on the pressure drop are investigated by the experiments and numerical analysis. The pressure loss coefficients are significantly dependent upon the Reynolds number in the laminar flow regime. As Reynolds number increases, the pressure loss coefficients of both Newtonian and non-Newtonian fluids decrease in the laminar flow regime. As the ratio of length to diameter increases the maximum pressure loss coefficient increases in the laminar flow regime for both Newtonian and non-Newtonian fluids. Newtonian fuid shows the highest values of pressure loss coefficient and blood the next, followed by Carbopol solution and Separan solution in order. Experimental results are used to verify the numerical analyses for flows of Newtonian and non-Newtonian fluids. Numerical results for the maximum pressure loss coefficient in the stenotic tubes are in fairly good agreement with the experimental results. The relative differences between the numerical and experimental results of the pressure loss coefficients in the laminar flow regime range from 0.5% to 14.8%.

A Study on Improvement of Engine Cooling System (엔진 냉각 시스템 개선에 관한 연구)

  • Kim, M.H.;Oh, B.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.