• Title/Summary/Keyword: B/C

Search Result 28,722, Processing Time 0.063 seconds

Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process (TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향)

  • 김선혜;임경란;심광보;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.777-783
    • /
    • 2003
  • The mechanical properties of B$_4$C/Al composites normally depend on the species and quantity of reaction products between B$_4$C and Al and then the control of reaction products is necessary to make desirable composites for lightweight advanced or armor materials. TiB$_2$ is chemically inert with aluminum and has a lower contact angle (85$^{\circ}$ at 100$0^{\circ}C$) to liquid aluminum than B$_4$C. Thus, TiB$_2$ coating on B$_4$C may lower infiltration temperature of aluminum when the B$_4$C/Al composites is fabricated by infiltration process. In this study, the effects of TiB$_2$ on the microstructure and mechanical properties of the B$_4$C/Al composites have been investigated. TiB$_2$ coated B$_4$C powder was prepared using the sol-gel technique. It was found that the B$_4$C surface is homogeneously covered with TiB$_2$ having a particles size of 20-50 nm. While the B$_4$C/Al composites prepared by infiltration after TiB$_2$ coating had 17 wt% of unreacted Al, on the other hand, the B$_4$C/Al composites without coating included 14 wt% of Al. As a result, the composites infiltrated after the coating showed higher fracture toughness and lower hardness. This strongly suggests that TiB$_2$ not only lowers the infiltration temperature, but also inhibits the reaction between B$_4$C and Al.

Reaction Synthesis and Mechanical Properties of $B_4C$-based Ceramic Composites

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1080-1081
    • /
    • 2006
  • In this investigation, $B_4C$ based ceramic composites were fabricated by in-situ reaction hot pressing using $B_4C$, TiC SiC powder as starting materials. The reaction synthesized composites by hot pressing at $1950^{\circ}C$ was found to posses very high relative density. The reaction synthesized $B_4C$ composites comprise $B_4C$, $TiB_2$, SiC and graphite by the reaction between TiC and $B_4C$. The newly formed $TiB_2$ and graphite was embedded both inside grain and at grain boundary $B_4C$. The mechanical properties of reaction synthesized $B_4C-TiB_2-SiC$-graphite composites were more enhanced compared to those of monolithic $B_4C$.

  • PDF

DC Pulsed Magnetron Sputtering 법으로 제조된 B-C 박막과 B-C/DLC 다층막의 물성에 관한 연구

  • Kim, Gang-Sam;Jo, Yong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.311-311
    • /
    • 2012
  • Boron carbide (B-C) 박막은 높은 경도, 열적 안전성, 화학적 안전성이 우수한 하드 코팅 소재로 사용되고 있다. 우수한 특성을 가지는 B-C 박막에 대한 연구는 B4C 비전도성 타겟을 이용하여 RF Sputtering 법으로 증착 공정변수에 대해서 박막의 물성에 관해 일부 연구자들이 진행하였으나, Pulsed dc margnetron sputtering 법으로 증착 공정변수에 대한 물성의 연구는 미진하였다. 반면에, DLC 박막은 우수한 특성을 가지는 하드 코팅 소재이나 400도 이상에서는 내열성이 떨어지는 단점을 가지고 있다. 연구에서는 B-C 박막의 내열성이 우수한 특성을 이용하여 DLC 박막의 내열성을 높이기 위한 목적으로 B-C 박막과 DLC 박막을 다층막으로 제조함으로서 DLC 박막을 구조적으로 안정화를 시키고자 하였다. 그리고 비전도성 B4C 타겟으로 Pulsed dc 마그네트론 스퍼터링법을 이용하여 증착기술을 개발하기 위해서 공정압력과 인가전력에 따른 B-C 박막을 제조하여 그 물성을 조사하였고, B-C/DLC 다층막을 제조하여 DLC 박막의 내열성을 증가시키고자 하였다. B-C 박막과 B-C/DLC 다층막의 경도와 탄성율은 나노인덴테이션과 마이크로 비커스를 이용하였으며, 박막의 성장구조와 박막의 구조를 조사하기 위해 SEM과 FTIR 및 XRD 을 이용하여 측정하였다.

  • PDF

Phase Orientation of TiC-$TiB_2$-SiC Ternary Eutectic Composite Prepared by an FZ Method

  • Tu, Rong;Li, Wenjun;Goto, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.859-860
    • /
    • 2006
  • TiC-$TiB_2$-SiC system was a ternary eutectic, whose eutectic composition was 34TiC-$22TiB_2$-44SiC (mol%). TiC-$TiB_2$-SiC ternary eutectic composite were synthesized by a floating zone method using TiC, $TiB_2$ and SiC powders as starting materials. The TiC-$TiB_2$-SiC eutectic composite showed a lamellar texture. TiC(022), $TiB_2(010)$ and SiC(111) of the eutectic composite were perpendicular to the growth direction. TiC-$TiB_2$-SiC ternary eutectic composite had specific relationship among the crystal planes: TiC[011]//$TiB_2[010]$//SiC[112], TiC(200)//$TiB_2$(001)//SiC(402) and $TiC(1\bar{1}1)$//$TiB_2(101)$//SiC(220).

  • PDF

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

Unity in HIV-1 Sequence Diversity: Identification and Characterization of Korean Clade in HIV-1 Isolated from Korean

  • Lee, Chan-Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2006.05a
    • /
    • pp.129-131
    • /
    • 2006
  • Through molecular phylogenetic analysis using the nef gene sequences of HIV-l isolated from Korean registered in the NCBI GenBank together with 41 reference strains and 94 foreign isolates, we verified that most (${\sim}80%$) of Korean isolates belonged to subtype B and 78% of subtype B were clustered together exclusively of foreign isolates, and this cluster was named Korean clade subtype B ($K_cB$). Similarity study suggested that the $K_cB$ cluster was more homogeneous than and clearly distinctive from the non-Korean subtype B ($NK_cB$). Comparison of the consensus amino acid sequences of the $K_cB\;or\;NK_cB$ revealed characteristic $K_cB$ signature amino acid pattern comprised of 13 amino acid residues. The $K_cB$ signature amino acid residues were critical in separating the $K_cB$ ftom the $NK_cB$, since substitution of the $NK_cB$ sequences with $K_cB$ signature amino acids relocated them to the Koran clade, and vice versa. Synonymous and nonsynonymous substitution rate study suggested positive selection event for the $K_cB$.

  • PDF

Properties of SiC-$ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (방전플라즈마 소결에 의한 SiC-$ZrB_2$ 도전성 세라믹 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1252_1253
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.97[%], 74.62[%], 77.99[%] and 72.61[%] respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of ZrO2 phase. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are $4.57{\times}10^{-1}$, $2.13{\times}10^{-1}$, $1.53{\times}10^{-1}$ and $6.37{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater above 1000[$^{\circ}C$].

  • PDF

Molecular Genetic Studies of Korean Population. 16. Genetic Polymorphim of the Sixth Complement Component (C6) (한국인 집단의 유전학적 연구 16. Compiement Component 6의 유전적 다형)

  • 박경숙;김영진;목지원;이미혜
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.228-231
    • /
    • 1991
  • The phenotyping of the sixth complement component (C6) was performed on plasma or serum samples from 383 unrelated Korean, by IEF and immunoblotting using anti-human C6 serum. Three common allotypes, C6 A, C6 B and C6 B2 and two rare allotypes, C6 Ml and C6 Mu were observed. The allele frequencies of C6*A, C6*B and C6*B2 were estimated to be 0.4399, 0.5144, 0.0392, respectively. These frequencies are similar to those of the Eastasian populations.

  • PDF

Pressureless Infiltration Processing of B4C/Al Composite by Surface Modification (표면 개질에 의한 상압에서의 B4C/Al복합체 제조 방법)

  • 임경란;강덕일;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.128-131
    • /
    • 2003
  • Formation of$B_4C/Al$composite by pressureless infiltration was investigated by lowering wetting angle via surface modification of $B_4C$powder with alumina precursor. Surface modification was confirmed by zeta potential analysis. The$B_4C/Al$composite was prepared by placing an Al 6061 disk on the$B_4C$preform and heating at $1030{\circ}C$/20 min under a flowing argon, but no infiltration took place for a bare $B_4C$ preform even at$1250{\circ}C$/30 min. Analysis of XRD and SEM showed the $Al_3BC$phase besides$B_4C$and Al, but no trace of deteriorative$A1_4C_3$.