BOUNDEDNESS OF $C^{b,c}$ OPERATORS ON BLOCH SPACES

PANKAJ KUMAR NATH AND SUNANDA NAIK*

ABSTRACT. In this article, we consider the integral operator $\mathcal{C}^{b,c}$, which is defined as follows:

$$\mathcal{C}^{b,c}(f)(z) = \int_0^z \frac{f(w) * F(1,1;c;w)}{w(1-w)^{b+1-c}} dw,$$

where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the $\mathcal{C}^{b,c}$ operators on Bloch spaces.

1. Introduction and preliminary results

Let \mathbb{D} denote the unit disc in the complex plane \mathbb{C} , $H(\mathbb{D})$ the set of all analytic functions on \mathbb{D} and \mathcal{H}_0 be the class of all functions $f \in H(\mathbb{D})$ with f(0) = 0.

For any complex number $a, b, c \neq -n, n = 0, 1, 2, \ldots$, the Gaussian/classical hypergeometric function $_2F_1(a, b; c; z)$ is defined by power series expansion

$$_{2}F_{1}(a,b;c;z) = F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a,n)(b,n)}{(c,n)} \frac{z^{n}}{n!} (|z| < 1),$$

where (a, n) is the shifted factorial defined by Appel's symbol

$$(a,n) = a(a+1)\dots(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, n \in \mathbb{N} = \{1,2,\dots\}$$

and (a, 0) = 1 for $a \neq 0$, (see [1]). Obviously, F(a, b; c; z) is an analytic function in \mathbb{D} . We refer the reader to [1] for a background on Gaussian hypergeometric functions. For the asymptotic behavior of F(a, b; c; z) for z near 1, we refer to [11] which has been used for a number of investigations.

We consider the integral operator, called $\mathcal{C}^{b,c}$ operator for $b, c \in \mathbb{R}$, b, c > 0 with b+1 > c, on the space \mathcal{H}_0 defined by

(1)
$$\mathcal{C}^{b,c}(f)(z) = \int_0^z \frac{f(w) * F(1,1;c;w)}{w(1-w)^{b+1-c}} dw,$$

where * denotes the Hadamard/ convolution product of power series. That is, if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ are two analytic functions in |z| < R then

2010 Mathematics Subject Classification: 30D05, 30H05, 33C05, 47B38, 44A35.

Key words and phrases: Generalized Cesáro operators, Bloch-type space, Compactness.

Received January 3, 2022. Revised July 18, 2022. Accepted August 20, 2022.

^{*} Corresponding author.

⁽c) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

P. K. Nath and Sunanda Naik

f * g is defined by $f * g(z) = \sum_{n=0}^{\infty} a_n b_n z^n$ and this series converges for $|z| < R^2$. Moreover,

$$(f \ast g)(z) = \frac{1}{2\pi i} \int_{|w| = r} f(w)g(z/w) \, \frac{dw}{w}, \quad |z| < rR < R^2.$$

In particular, if f, g are in $H(\mathbb{D})$, we have

(2)
$$(f * g)(rz) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it})g(ze^{-it}) dt, \quad 0 < r < 1.$$

In particular, if $b = \beta$, c = 1 then

$$\mathcal{C}^{\beta,1}(f)(z) = \int_0^z \frac{f(w) * F(1,1;1;w)}{w(1-w)^{\beta}} dw$$

= $\mathcal{C}_{\beta}(f)(z)$

which is the generalized β -Cesáro operator as defined in [7]. The boundedness, compactness, essential norm and spectrum of the β -Cesáro operators are studied by authors in [7]. Moreover, boundedness of the Cesáro and related operators in various function spaces are studied in the literature; see [5,9,13,15]. In this paper, we study these operators as linear operators on *a*-Bloch space, denoted by \mathcal{B}_a , and is defined for each a > 0 as follows:

$$\mathcal{B}_{a} = \{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{B}_{a}} = \sup_{z \in \mathbb{D}} (1 - |z|^{2})^{a} |f'(z)| < \infty \}.$$

In particular, the spaces $\mathcal{B}_{\mathbf{a}}$ becomes the classical Lipschitz and Bloch spaces whenever $a \in (0, 1)$ and a = 1 respectively.

The space \mathcal{B}_a is a complex Banach space with the norm

$$||f|| = |f(0)| + ||f||_{\mathcal{B}_a},$$

whereas $||f||_{\mathcal{B}_a} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^a |f'(z)|$ represents a semi-norm. By restricting this space with the condition f(0) = 0, for $f \in \mathcal{B}_a$, we get a space, which is a subspace of \mathcal{B}_a , denoted by \mathcal{B}_a^0 . The semi-norm $||.||_{\mathcal{B}_a}$ on \mathcal{B}_a becomes norm on \mathcal{B}_a^0 . The spaces \mathcal{B}_a and \mathcal{B}_a^0 together with its harmonic analog have been investigated recently by a number of authors. See for instance, see [4, 8, 10] and the references therein. Unless it is specified we consider a > 0 throughout this paper. More on the Bloch space can be found in [16, 17].

Main motive of this paper is to study the boundedness properties of generalized $\mathcal{C}^{b,c}$ operators on \mathcal{B}_a^0 which include the β -Cesáro operators as well as the classical Cesáro operator.

2. Boundedness of $\mathcal{C}^{b,c}$ operators on \mathcal{B}^0_a

In this section, we discuss the boundedness properties of the $\mathcal{C}^{b,c}$ operators, on \mathcal{B}^0_a . At the end of this section, we provide few examples to show that the $\mathcal{C}^{b,c}$ operators are unbounded linear operators on \mathcal{B}^0_a , under some conditions on b, c. To obtain our desired results, we need the following lemmas.

LEMMA 1. Let b, c > 0 with $c \ge b$. For $f \in \mathcal{B}_a$ we have $f * F \in \mathcal{B}_a$, where F(z) = F(1,b;c;z). Further

$$||f * F||_{\mathcal{B}_a} \le \frac{2^a b ||f||_{\mathcal{B}_a}}{c}.$$

Proof. For c = b, proof is easy as we have f(z) * F(1, b; b; z) = f(z). Now for c > b, using the Euler integral representation with a simple calculation (see page 336 of [2]), we have

(3)
$$f(z) * F(1,b;c;z) = \frac{1}{B(b,c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} f(tz) dt,$$

where B(b, c - b) is the usual beta function. Hence we get

$$\begin{aligned} (1-|z|^2)^a |(f(z)*F(1,b;c;z))'| &\leq \frac{1}{B(b,c-b)} \int_0^1 t^b (1-t)^{c-b-1} (1-|z|^2)^a |f'(tz)| dt \\ &\leq \frac{1}{B(b,c-b)} \int_0^1 t^b (1-t)^{c-b-1} (1-t^2|z|^2)^a |f'(tz)| dt. \end{aligned}$$

Since c > b, by taking supremum in both sides of the above inequality, we find

$$\|f * F\|_{\mathcal{B}_a} \le \frac{2^a \|f\|_{\mathcal{B}_a}}{B(b, c-b)} \int_0^1 t^b (1-t)^{c-b-1} dt,$$

which complete the proof.

REMARK 2. In [2], integral representation for f * F(a, b; c; z) is given under certain conditions on the parameters a, b, c and was used to derive geometric properties of the Hadamard product. This representation may be used to generalize Lemma 1.

LEMMA 3. Let $f \in \mathcal{B}_a$. Suppose c > b > 0 and F(z) = F(1, b; c; z). Then we have the following properties: (i) If a < 1, then

$$|(f * F)(z)| \le |f(0)| + \frac{b||f||_{\mathcal{B}_a}}{2c(1-a)} < \infty.$$

(ii) If a = 1, then

$$|(f * F)(z)| \le |f(0)| + \frac{||f||_{\mathcal{B}_1}}{2} \log\left(\frac{1}{1-|z|}\right).$$

(iii) If a > 1, then

$$|(f * F)(z)| \le |f(0)| + \frac{||f||_{\mathcal{B}_a}}{a-1} \left(\frac{1}{(1-|z|)^{a-1}} - 1\right).$$

Proof. Suppose $f \in \mathcal{B}_a$ and $z \in \mathbb{D}$. Then

$$|(f * F)(z) - (f * F)(0)| = \left| z \int_0^1 (f * F)'(zu) du \right|.$$

Using (3) and by the definition of *a*-Bloch space, we have

$$\begin{aligned} |(f*F)(z) - (f*F)(0)| &= \frac{|z|}{B} \int_0^1 u \left(\int_0^1 t^b (1-t)^{c-b-1} |f'(tzu)| dt \right) du \\ &\leq \frac{|z| ||f||_{\mathcal{B}_a}}{B} \int_0^1 u \left(\int_0^1 \frac{t^b (1-t)^{c-b-1}}{(1-|z|^2 t^2 u^2|)^a} dt \right) du \\ &\leq \frac{b |z| ||f||_{\mathcal{B}_a}}{c} \int_0^1 u \frac{1}{(1-|z|^2 u^2)^a} du \\ &= \frac{b ||f||_{\mathcal{B}_a}}{2c} \int_{1-|z|}^1 \frac{1}{u^a} du. \end{aligned}$$

Since (f * F)(0) = f(0), the above inequality gives

$$|(f * F)(z) - f(0)| \le \frac{b ||f||_{\mathcal{B}_a}}{2c(1-a)} \left(1 - \frac{1}{(1-|z|)^{a-1}}\right).$$

Further, by using triangle inequality, we obtain

(5)
$$|(f * F)(z)| \le |f(0)| + \frac{b ||f||_{\mathcal{B}_a}}{2c(1-a)} \left(1 - \frac{1}{(1-|z|)^{a-1}}\right).$$

Let a < 1. Since $1 - (1 - |z|)^{1-a} \le 1$, from (5) we obtain

$$|(f * F)(z)| \le |f(0)| + \frac{b||f||_{\mathcal{B}_a}}{2c(1-a)}.$$

When a = 1, from (4), we get

(6)
$$|(f * F)(z)| \le |(f * F)(0)| + \frac{b||f||_{\mathcal{B}_1}}{2c} \log\left(\frac{1}{1-|z|}\right).$$

Now for a > 1, it is easily follows that

(7)
$$|(f * F)(z)| \le |f(0)| + ||f||_{\mathcal{B}_a} \frac{1}{a-1} \left(\frac{1}{(1-|z|)^{a-1}} - 1 \right)$$

This completes the proof of this lemma.

For $f \in B_a^0$, Lemma 1 gives $f * F \in \mathcal{B}_a^0$, $\mathcal{C}^{b,c}(f)$ is an analytic function in \mathbb{D} and $\mathcal{C}^{b,c}(f)(0) = 0$. Now, we have our main result, which describes the boundedness of $\mathcal{C}^{b,c}$ operators from \mathcal{B}_a^0 to \mathcal{B}_a^0 for three different restrictions on b and c. Now onward we denote F(z) = F(1, 1; c; z).

THEOREM 4. Suppose b, c are positive real numbers with c > 1. The $\mathcal{C}^{b,c}$ operator is bounded linear operator from \mathcal{B}^0_a to \mathcal{B}^0_a , for

- (i) $b + 1 c \le a < 1$ (ii) $b + 1 - c \le 1 < a$
- (iii) b+1-c < a = 1.

Furthermore, for a > 1 or a < 1, we obtain

(8)
$$\|\mathcal{C}^{b,c}(f)\|_{\mathcal{B}_a} \le \frac{b\|f\|_{\mathcal{B}_a}}{2^{1-a}c|1-a|}.$$

470

(4)

Proof. Case(i): Suppose that $f \in \mathcal{B}_a^0$, for a < 1. Using (5), we have

$$\frac{|(f * F)(z)|}{|z(1-z)^{b+1-c}|} \le \frac{||f||_{\mathcal{B}_a}}{|z(1-z)^{b+1-c}|} \frac{b}{2c(1-a)} \left(\frac{(1-|z|)^{a-1}-1}{(1-|z|)^{a-1}}\right)$$

Since $b + 1 - c \le a < 1$ and for a < 1, we have $1 - (1 - |z|)^{1-a} \le |z|$, proceeding as in the proof of Theorem 2.3 of [7], we have

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{b \|f\|_{\mathcal{B}_a}}{2^{1-a}c(1-a)} (1-|z|)^{a-b+c-1}$$

Also $(1 - |z|)^{a-b+c-1} < 1$ and z is arbitrary point here. Therefore (8) follows. Case (ii): Suppose that $f \in \mathcal{B}_a^0$, for a > 1. From (7), we have

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{(1+|z|)^a}{|z|} \frac{b \|f\|_{\mathcal{B}_a}}{2c(a-1)} [(1-|z|)^{c-b} - (1-|z|)^{a-b-1+c}].$$

For $b + 1 - c \le 1 < a$, this leads to

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{(1+|z|)^a}{|z|} \frac{b ||f||_{\mathcal{B}_a}}{2c(a-1)} (1-|z|)^{c-b} [1-(1-|z|)^{a-1}].$$

Since $1 - (1 - |z|)^{a-1} \le 1 - (1 - |z|)^{\lceil a \rceil}$, where $\lceil . \rceil$ is a Greatest Integer Function, we have

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{2^{a-1}}{|z|} \frac{b ||f||_{\mathcal{B}_a}}{c(a-1)} (1-|z|)^{c-b} [1-(1-|z|)^{\lceil a\rceil}].$$

Since $(1 - |z|)^{-\lceil a \rceil} = F(\lceil a \rceil; 1; 1; |z|)$, a simple calculation gives

$$1 - (1 - |z|)^{\lceil a \rceil} = \lceil a \rceil F(-\lceil a \rceil + 1; 1; 2; |z|).$$

Thus, as b < c we obtain

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{2^{a-1} \lceil a \rceil b \| f \|_{\mathcal{B}_a}}{c(a-1)} F(-\lceil a \rceil + 1; 1; 2; |z|).$$

We use the formula for c > b - m, $F(-m; b; c; 1) = \frac{(c - b)_m}{(c)_m}$. Since z is arbitrary point in \mathbb{D} , therefore we have

$$\|\mathcal{C}^{b,c}(f)\|_{\mathcal{B}_a} \le \frac{2^{a-1} \lceil a \rceil \|f\|_{\mathcal{B}_a}}{c(a-1)} \sup F(-\lceil a \rceil + 1; 1; 2; |z|) = \frac{b2^{a-1} \|f\|_{\mathcal{B}_a}}{c(a-1)}$$

which completes the proof.

Case (iii) Suppose that $f * F \in \mathcal{B}_a^0$, for a = 1. From (6), we have

$$\frac{|(f * F)(z)|}{|z(1-z)^{b+1-c}|} \le \frac{||f||_{\mathcal{B}_1}}{2|z(1-z)^{b+1-c}|} \log\left(\frac{1}{1-|z|}\right).$$

From this we get

$$(1-|z|^2)^a \left| \frac{f(z) * F(z)}{z(1-z)^{b+1-c}} \right| \le \frac{(1-|z|^2)^{c-b}}{|z|} \frac{\|f\|_{\mathcal{B}_1}}{2} \log\left(\frac{1}{1-|z|}\right).$$

For b + 1 - c < a = 1, Since z is arbitrary point, we have

$$\|\mathcal{C}^{b,c}(f)\|_{\mathcal{B}_1} \le \sup\left\{\frac{(1-|z|)^{c-b}}{|z|}\log\left(\frac{1}{1-|z|}\right): z \in \mathbb{D}\right\} \|f\|_{\mathcal{B}_1}.$$

pletes the proof. \Box

This completes the proof.

Counterexamples. We just proved that either of the cases $b + 1 - c \le a < 1$ or $b + 1 - c \le 1 < a$ or b + 1 - c < a = 1, the $\mathcal{C}^{b,c}$ operators are bounded from \mathcal{B}^0_a to \mathcal{B}^0_a . We now show that for the remaining cases: b + 1 - c > a or $b + 1 - c = a \ge 1$ and 1 < b + 1 - c < a, the $\mathcal{C}^{b,c}$ operators need not be bounded as the following counterexamples show.

EXAMPLE 5. Let $f(z) = z^k, k \ge 1$. Then $f * F \in \mathcal{B}^0_a$, for b + 1 - c > a since

$$(1-|z|^2)^a \left| \frac{Kz^k}{z(1-z)^{b+1-c}} \right| = K(1+|z|^2)^a \frac{|z|^{k-1}(1-|z|)^a}{|(1-z)|^{b+1-c}},$$

where $K = \frac{(b,k)}{(1,k)} > 0$. For $z = t \in (0,1)$, we obtain

$$(1-|z|^2)^a \left| \frac{Kz^k}{z(1-z)^{b+1-c}} \right| = K(1+t)^a \frac{t^{k-1}(1-t)^a}{(1-t)^{b+1-c}} = K \frac{t^{k-1}(1+t)^a}{(1-t)^{b+1-c-a}}$$

As t tends to 1, the right hand side term tends to ∞ . Therefore, the $\mathcal{C}^{b,c}$ operator is an unbounded linear operator from \mathcal{B}_a^0 to \mathcal{B}_a^0 , for b+1-c>a.

EXAMPLE 6. Let $f(z) = \log(1-z)$, where the principal value of the branch of logarithm is chosen. Using (3), when c > 1, $f * F \in \mathcal{B}_a^0$, for $a \ge 1$ and for $z = u \in (0, 1)$, we have

$$\begin{aligned} (1-|z|^2)^a \left| \frac{\log(1-z)*F(1,1;c;z)}{z(1-z)^{b+1-c}} \right| &= (1-u^2)^a \left| \frac{\int_0^1 t^{b-1}(1-t)^{c-1-1}\log(1-tu)dt}{B(b,c-b)u(1-u)^{b+1-c}} \right| \\ &= \frac{(1+u)^a}{(1-u)^{b+1-c-a}} \left| \frac{\int_0^1 t^{b-1}(1-t)^{c-1-1}\log(1-tu)dt}{B(b,c-b)u} \right| \end{aligned}$$

Since the integral on the right hand side is finite so, for $b + 1 - c \ge a$, as u tends to 1, the right hand side term diverges to ∞ . Therefore, the $\mathcal{C}^{b,c}$ operator is an unbounded linear operator from \mathcal{B}_a^0 to \mathcal{B}_a^0 , for $b + 1 - c \ge a \ge 1$.

EXAMPLE 7. Let $f(z) = \frac{z}{(1-z)^a}$, for a > 0. Then $f * F \in \mathcal{B}^0_{a+1}$. Using (3), when c > 1, and for $z = u \in (0, 1)$, we have

$$\begin{split} (1-|z|^2)^{a+1} \left| \frac{f(z)*F(1,1;c;z)}{z(1-z)^{b+1-c+a}} \right| &= (1-u^2)^a \left| \frac{\int_0^1 t^{b-1}(1-t)^{c-1-1} \frac{tu}{(1-tu)^a} dt}{B(b,c-b)u(1-u)^{b+1-c}} \right| \\ &= \frac{(1-u^2)^{a+1}}{(1-u)^{b+1-c}} \int_0^1 t^b (1-t)^{c-1-1} (1-tu)^{-a} dt \\ &> \frac{(1-u^2)^{a+1}}{(1-u)^{b+1-c}} \int_0^1 t^b (1-t)^{c-1-1} dt. \end{split}$$

For $z = t \in (0, 1)$, then it yields

$$(1-|z|^2)^{a+1}\left|\frac{z}{z(1-z)^{b+1-c+a}}\right| = (1+t)^{a+1}\frac{(1-t)^{a+1}}{(1-t)^{b+1-c+a}} = \frac{(1+t)^{a+1}}{(1-t)^{b-c}}$$

Then for b+1-c > 1, and c > a+1 as t tends to 1, the right hand side term diverges to ∞ . Therefore, the $\mathcal{C}^{b,c}$ operator is an unbounded linear operator from \mathcal{B}_a^0 to \mathcal{B}_a^0 , for b+1-c > 1.

Conflicts of Interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- [1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, (1999).
- [2] M. R. Agrawal, P. G. Howlett, S. K. Lucas, S. Naik and S. Ponnusamy, Boundedness of generalized Cesaro averaging operators on certain function spaces, J. Comput. Appl. Math. 180 (2005), 333–344
- [3] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functions and function spaces, J. Comput. Appl. Math. 139 (2) (2002), 299–322.
- [4] H. Deng, S. Ponnusamy, and J. Qiao, Extreme points and support points of families of harmonic Bloch mappings, Potential Analysis 55 (2021), 619–638.
- [5] E. Diamantopoulos and A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), 191–198.
- [6] H. Hidetaka, Bloch-type spaces and extended Cesáro operators in the unit ball of a complex Banach space, Preprint (https://arxiv.org/abs/1710.11347).
- [7] S. Kumar and S. K. Sahoo, Properties of β-Cesáro operators on α-Bloch Space, Rocky Mountain J. Math. 50 (1) (2020), 1723–1743.
- [8] G. Liu and S. Ponnusamy, On Harmonic ν-Bloch and ν-Bloch-type mappings, Results in Mathematics 73(3) (2018), Art 90, 21 pages.
- [9] J. Miao, The Cesáro operator is bounded on H^p for 0 , Proc. Amer. Math. Soc.**116**(4) (1992), 1077–1079.
- [10] M. Huang, S. Ponnusamy, and J. Qiao, Extreme points and support points of harmonic alpha-Bloch Mappings, Rocky Mountain J. Math. 50 (4) (2020), 1323–1354.
- S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), 278–301.
- [12] A. Siskakis, Semigroups of composition operators in Bergman spaces, Bull. Austral.Math. Soc. 35 (1987), 397–406.
- [13] A. G. Siskakis, The Cesáro operator is bounded on H¹, Proc. Amer. Math. Soc. **110** (4) (1990), 461–462.
- [14] S. Stević, Boundedness and Compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. Math. Zh. 48 (3) (2007), 694–706.
- [15] J. Xiao, Cesaro type operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68 (1997), 398–406.
- [16] K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007).
- [17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, USA, (2005).

P. K. Nath and Sunanda Naik

Pankaj Kumar Nath

Department of Applied Sciences, Gauhati University, Assam 781014, India *E-mail*: pankaj.kumar02460gmail.com

Sunanda Naik

Department of Applied Sciences, Gauhati University, Assam 781014, IndiaE-mail:snaik@gauhati.ac.in