• Title/Summary/Keyword: Azimuthal velocity

Search Result 49, Processing Time 0.024 seconds

Visualization of Turbulent Flow around a Sphere (구 주위 난류유동에 관한 가시화 연구)

  • Jang, Young-Il;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.401-402
    • /
    • 2006
  • The turbulent flow around a sphere was investigated using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5300, 11000 and PIV measurements in a circulating water channel. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. The mean velocity field measured using a PIV technique in x-y center plane demonstrates the detailed near-wake structure such as nearly symmetric recirculation region, two toroidal vortices, laminar separation, transition and turbulent eddies. The PIV measurements of turbulent wake in y-z planes show that a recirculating vortex pair dominates the near-wake region.

  • PDF

Experimental Investigation of Unsteady Pressure Generated by Oscillating Outer Cylinder (진동하는 외부 실린더에 의해 유발되는 비정상 압력의 실험적 고찰)

  • 심우건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.519-526
    • /
    • 1995
  • Experiments have been performed to test the analytical tools developed concurrently for the motion-related unsteady pressure in annular passages. The outer cylindrical body was oscillated by a shaker in either rocking motion about a hinge-point or lateral translation motion. In the equilibrium configuration the two bodies are either concentric or eccentric, in the plane of oscillation or normal to it. The unsteady pressure generated by the oscillatory motion with low amplitudes (displacement/radius) was measured on wall of the fixed inner cylinder at various axial and azimuthal locations. The unsteady pressure were compared with theoretical predictions, and agreement was found to be within 10%. Experiments have been shown that the effect of flow velocity on the unsteady pressure is minimal and the pressure increases more or less with oscillatory motion, for low flow velocities (Re = 2 900).

Rotating Flows in a Circular Cylinder with Unstable Stratification (불안정 성층화를 가진 원통형 용기 내의 회전유동에 관한 연구)

  • Kim, Jae-Won
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Rotating flow of a stratified fluid contained in a circular cylinder with unstable temperature gradient imposed on the side wall of it has been numerically studied. The temperatures at the endwall disks are constant. The top disk of the container is coider than that of the bottob disk, as much as the temperature difference n${\Delta}$T, (0${\leq}$n${\leq}$3). Flows in the vessel are driven by an impulsive rotation of the hot bottom disk with respect to the central axis of the cylinder. Flow details have been acquired. For this flow, the principal balance in the interior core is characterized by a relationship between the radial temperature gradient and the vertical shear in the azimuthal velocity. As the buoyancy effect becomes appreciable, larger portions of the meridional fluid transport are long-circuit from the bottom disk to the interior region via the side wall.

  • PDF

Flows in a confined cylindrical container with differential rotating top and bottom disks (속도차를 갖는 두 회전판에 의해 유도되는 원통 내부 유동)

  • Park, Jun-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.487-490
    • /
    • 2008
  • A theoretical study is made of the flow in a confined cylindrical container with differential rotating top and bottom disks. Two kinds of theoretical solution for the azimuthal velocity were obtained: one is an exact solution of Bessel function type and the other is an approximate solution of exponential function type which comes from WKB approximation. Both theoretical solutions are shown to be self consistent with each other as well as a good agreement with previous studies. Moreover, in a range of relatively low Reynolds number, the obtained solution of Bessel function type shows better result than previous solutions.

  • PDF

An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame (대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

Large Eddy Simulation of an Isothermal Swirling Flow in a Model Gas Turbine Combustor (모델 가스터빈 연소기에서 등온 선회유동의 대 와동 모사)

  • Hwang, Chul-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.462-468
    • /
    • 2004
  • Large eddy simulation(LES) methodology used to model isothermal non-swirling and swirling flows in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code and characterize swirling flow, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using k -$\epsilon$ model as well as experimental data. The results showed that the LES and RANS well predicted the mean velocity field of a non-swirling flow. Specially, the LES showed a very excellent prediction performance for the corner recirculation zone. In swirling flow, comparing with the results obtained by RANS, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone. Finally, unsteady phenomena of turbulent flow was examined with LES methodology.

  • PDF

A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers (가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구)

  • Lee, Inseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

Large Eddy Simulation for the Analysis of Practical Combustion Field (실용 연소장 해석을 위한 대 와동 모사)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.