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Abstract

A theoretical study is made of  the flow in a confined cylindrical container with differential rotating 
top and bottom disks.  Two kinds of theoretical solution for the azimuthal velocity were obtained: one 
is an exact solution of Bessel function type and the other is an approximate solution of exponential 
function type  which comes from WKB approximation. Both theoretical solutions are shown to be self 
consistent with each other as well as  a good agreement with previous studies. Moreover,  in a range 
of relatively low Reynolds number, the obtained solution of Bessel function type shows better result 
than previous solutions. 
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1. Introduction 

   A study is made of  the flow in a confined 
cylindrical container with differential rotating top and 
bottom disks. The problem to be addressed here is the 
flow between two finite disks of radius  , the top 
disk rotating at constant angular speed   and the 
bottom disk at   and the cylindrical sidewall 
shrouding the disks assumed to rotate at constant  
angular speed   . All the above velocities are defined 
with respect to inertial coordinate. It is assumed that 
the top and bottom disks,  separating at a mean 
distance  , of which locations are, respectively,  
defined as    and  . For the 
simplicity, aspect of the container is assumed 
   . Without loss of generality, it assumes that 
 ≥     ≤  ≤   and    ≪  . 
The system Reynolds number is very large. 
  This type of problem setting is a basic model of 
rotating fluid machinery. There are many  related 
previous studies [Batchelor(1951), Stewartson(1957), 
Lopez(1996)].  It is scarce of theoretical solution 
investigating the whole flow field in the regions of 
interior and sidewall boundary layer. Previous 

theoretical studies  focused mainly on local flow 
characteristics such as  inner inviscid region far from 
the near wall boundary (Batchelor, 1951), sidewall 
boundary layer (Stewartson, 1957). The global flow 
characteristics is obtained  by a numerical approach 
(Lopez, 1996).
  In this study, by invoking an assumption of 
Taylor-Proudman column, the governing equation for 
azimuthal velocity, which is available simultaneously in 
the interior region and in the sidewall boundary layer, 
will be built. It will be secured two kinds of 
theoretical solution :  one  is an exact solution of 
governing equation shown as a type of Bessel function 
and the other is an approximate solution shown as 
exponential function type. The approximate solution  is 
derived  from WKB approximation. Those solutions 
are a good agreement with previous local studies.  The 
Bessel function type exact solution, which gives better 
result than previous solutions in a low Reynold 
number regime, is shown to be very robust solution. 

2. The mathematical model

   The problem to be addressed here is the flow 

between two finite disks of radius R *, the top disk 
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rotating at constant angular speed Ω *
T

 and the 

bottom disk at Ω *
B

 and the cylindrical sidewall 
shrouding the disks assumed to rotate at constant  

angular speed Ω *
S
. All the above velocities are 

defined with respect to inertial coordinate. It is 
assumed that the top and bottom disks,  separating at 

a mean distance H *, of which locations are, 
respectively,  defined as      and     . 
For the simplicity, aspect of the container is assumed 
    . Without loss of generality, it assumes 
that 

 ≥ 
  and 

 ≤ 
 ≤ 

 .
  Appropriate non-dimensionalizations are given for 

velocities and pressure :




 
   

, p=
p
*
- p

*
0

ε ρ * Ω * 2
B

.

  The steady governing equations of above problem 
configuration with respect to rotating coordinate 
attached at the bottom disk rotating at the angular 

velocity Ω *
B

, including nonlinear terms, are, in 
nondimensional form,

1
r
∂
∂r
(ru)+

∂w
∂z
=0,              (1)

  


   ∇    , (2)

ε(u ∂v∂r +w
∂v
∂z
+
uv
r )+2u=E( ▽

2-
v

r
2 ),(3)

ε(u ∂w∂r +w
∂w
∂z )=-

∂p
∂z
+E ▽ 2w,      (4)

in which ε=
Ω *

B- Ω
*
T

Ω *
B

.

And associated boundary conditions are :

  u=w=0,v=-r at  
 ,

u= v=w=0  at  
 ,

and u=w=0,   at r=1,

in which    

 



 
   



. Thus, the value of 

sidewall angular velocity, , ranges  ≤ ≤  .

3. Analysis of  flow for the interior 

region far from horizontal disks

  It is well known that Taylor-Proudman column  
prevails in the interior flow  out of the horizontal 

boundary layer, i.e.,     at      

where   denotes the Ekman layer thickness of 
 . Eliminating z-derivative terms from eq.(3), 
one obtains the governing equation for azimuthal 
velocity in the interior region as follows

  


 .   (5)

It should be emphasized that the above eq. (5)  is 
valid simultaneously in  both regions of inner inviscid 
flow and sidewall boundary layer because the  
Taylor-Proudman column flow is  still sustaining  in 
the extended region. There are many previous 
investigations that, in the vertical boundary layer near 
the sidewall, the leading-order azimuthal and radial 
velocity-fields could be assumed as z-independent 
function [see Greenspan(1960)]. Thus, in the ensuing 
discussion,  the merged zone consisting of inner 
inviscid zone and sidewall boundary layer is called as 
an interior region.

  Consider the vertically averaged continuity 
equation from eq.(1) to obtain the u-v relation, 
which is needed for solving eq.(5) :




 

        .  (6)

From the consideration of Ekman compatibility 
condition which has been precisely investigated by 
many authors [Greenspan(1968)] for a variety of 
Rossby number ranges, the vertical velocity 
 ±  in the right-hand-side of eq.(6) 

becomes, for the  weakly nonlinear case, i.e.,  ≪   
as in the below:

for the bottom and top  disks, the linear Ekman 
conditions is expressed as [see, Greenspan(1968); Duck 
& Forter(2001)] :

    

 



  

,  (7a)

    

 



 

.     (7b)

  Substituting (7a) & (7b) into (6), the Ekman 
compatability condition is given as

    
 .    (8)

 Combining eq.(5) & (8),
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 .(9)

  After  some mathematical manipulations on 
transforming dependent variable  into Γ= r v i, 

Eq.(9) becomes

  

 

   


 ,     (10)

in which    .
  As assuming the solution of eq.(10) in a series 

form with an expansion parameter ε as below

Γ=-
1
2
η+ ∑

∞

n=0
ε n Γ

n
,     (11)

and substituting eq.(11) into eq.(10), all orders of 
the equation become :

 



  


   ,   (12a)

 



  


  




 


,   (12b)

 



  


 

  ,   (12c)

for ≥  ,

 



  


  

 
   


  
, 

      

and the associated boundary conditions are :
at the rotating axis ( η=0) , i.e., at r=0,
Γ
n (η=0)=0 (n=0,1,2,⋅⋅⋅),   (13a)

at the sidewall ( η=1), i.e., at r=1,

Γ
0 (η=1)=-δ+

1
2

,   (13b)

Γ
n (η=1)=0 (n=1,2,3,⋅⋅⋅).   (13c)

When E≪1, the WKB approximation is utilized to 
obtain the solution to above leading order equation as 
follows 

(1) zero-th order solution ( n=0)
From the consideration on   in the 

boundary condition(13b), we can take two kinds of 
transformation : 

    
,  ≤ ≤  (14a)

    
,    ≤  (14b)

Substituting eq.(14a,b) into eq.(12a), it gives, 
regardless of  -value,  

  



 

 


 

  . (15)

The boundary conditions are
→ →∞ , (16a)

      
   . (16b)

 To obtain the solution of Eq.(15), take a 
Taylor-series expansion of    as expansion parameter 

 

  
   

   
  . (17) 

Substituting Eq.(17) into Eq.(15), then , one can obtain 
each equation (18a)-(18c)to the second order:








 
 , (18a)




















, (18b)




















 
 






. (18c)

If  ≪  , Γ
0
 is obtained by WKB approximation 

on the above equation

  



   . (19)

The azimuthal velocity v i is

   






  . (20)

It should be noted that the solution (20) is available 
in the whole region( 0≤r≤1) out of the Ekman 
boundary layer. Especially, the first term of 
right-hand-side of Eq.(20) denotes the interior flow 
solution. The second term shows the Stewartson 
boundary layer solution which is the same result of 

previous well known E 1/4-Stewartson layer studies 
[(see eq.(3.15a), Heijst(1983)].

In the case of linear problem, an exact solution 
exists for the zero-th order equation.   an  exact 
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solution. When → , the eq.(12a) becomes

2 E 1/2η
d 2 Γ 0

d η 2
- Γ 0=0 . (21)

By using the radial coordinate( r= η), Eq.(21) is 
transformed  into modified Bessel equation for the 
leading order azimuthal velocity (    ). 




 



        . (22)

The solution of Eq.(22) is 

    
  

 , (23)

where  C 1
 and C 2

 is undetermined constants.  
From Eq.(13a) and Eq.(13b), 

  

  

 , C 2=0 .(24)

 
In summary, the leading order azimuthal velocity 

v ( 0 )
i

 is

v ( 0)
i =-

1
2
r+( 12 -δ)

I 1 ( 2 E
-1/4r)

I 1 ( 2 E
-1/4 )

.(25)

If E≪1, i.e.,  ≡   ≫  , an asymptotic 
approximation solution of    is

  ∼


  .  (26)

Implementing the above formula into Eq.(25), the 
solution (20) is recovered.  

4. Conclusions 

 A theoretical study is made of  the flow in a 
confined cylindrical container with differential rotating 
top and bottom disks.  The system Reynolds number 
is very large. By invoking an assumption of 
Taylor-Proudman column, the governing equation for 
azimuthal velocity in the interior region was built. 
Two kinds of theoretical solution for the azimuthal 
velocity were obtained: one  is an exact solution of 
Bessel function type and the other is an approximate 

solution of exponential function type  which comes 
from WKB approximation. Both theoretical solutions 
are shown to be self consistent with each other as 
well as  a good agreement with previous studies. 
Moreover,  in a range of relatively low Reynolds 
number, the obtained solution of Bessel function type 
shows better result than previous solutions.
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