• Title/Summary/Keyword: Averaging method

Search Result 554, Processing Time 0.037 seconds

Optimization-based Real-time Human Elbow Joint Angle Extraction Method (최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

Advanced Channel Estimation Method for IEEE 802.11p/WAVE System

  • Jang, DongSeon;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • In this paper, we propose an advanced Minimum Mean Square Error (MMSE) channel estimation method for IEEE 802.11p/Wireless Access in Vehicular Environments (WAVE) systems. To improve the performance of MMSE method, we apply the Weighted Sum using Update Matrix (WSUM) scheme to the step of calculating the instantaneously estimated channel and then, a time domain selectively averaging method is applied after the WSUM scheme. Based on that, the accuracy of instantaneously estimated channel increases and then, the accuracy of auto covariance matrix also increases. Consequently, we can achieve the performance gain over the conventional MMSE method. Through simulations based on the IEEE 802.11p standard, it is confirmed that the proposed scheme can outperform the existing channel estimation schemes.

Effect of turbulence driving and sonic Mach number on Davis-Chandrasekhar-Fermi method

  • Yoon, Heesun;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2019
  • Davis-Chandrasekhar-Fermi (DCF) method is a tool that is widely used to obtain the strength of the mean magnetic field projected on the plane of the sky. When there are independent eddies along the line of sight, the variation of polarization angle will decrease by the averaging effect. Therefore, the measured strength of the magnetic field can be overestimated. Cho & Yoo (2016) proposed a modified DCF method considering such effect. By using this, we quantitatively compared the results from the conventional DCF and the modified DCF methods for various sonic Mach numbers and driving schemes (the solenoidal and compressive driving). Here, we present that the modified DCF method does not show a strong dependence on the sonic Mach number or driving schemes either, while the conventional DCF method depends on the sonic Mach number for the compressive driving scheme.

  • PDF

Analysis of X-ray image qualities-accuracy of shape and clearness of image-using X-ray digital tomosynthesis

  • Roh, Young Jun;Kang, Sung Taek;Kim, Hyung Cheol;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.572-576
    • /
    • 1997
  • X-ray laminography and DT(digital tomosynthesis) that can form a cross-sectional image of 3-D objects promise to be good solutions for inspecting interior defects of industrial products. The major factors of the digital tomosynthesis that influence on the quality of x-ray cross-sectional images are also discussed. The quality of images acquired from the DT system varies according to image synthesizing methods, the number of images used in image synthesizing, and X-ray projection angles. In this paper, a new image synthesizing method named 'log-root method' is proposed to get clear and accurate cross-sectional images, which can reduce both artifact and blurring generated by materials out of focal plane. To evaluate the quality of cross-sectional images, two evaluating criteria: (1) shape accuracy and (2) clearness in the cross-sectional image are defined. Based on this criteria, a series of simulations were performed, and the results show the superiority of the new synthesizing method over the existing ones such as averaging and minimum method.

  • PDF

Viewing Quality Enhancement of 3D Reconstructed Images in Computational Integral Imaging Reconstruction by use of Averaging Method

  • Li, Gen;Hwang, Dong-Choon;Lee, Keong-Jin;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.757-760
    • /
    • 2008
  • In this paper, an improved computational integral imaging reconstruction (CIIR) is proposed. The proposed method can highly enhance the viewing quality of reconstructed image. To show the feasibility of proposed method, some experiments are performed and the results are compared and discussed with those of the conventional method.

  • PDF

Efficient two-step pattern matching method for off-line recognition of handwritten Hangul (필기체 한글의 오프라인 인식을 위한 효과적인 두 단계 패턴 정합 방법)

  • 박정선;이성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we propose an efficient two-step pattern matching method which promises shape distortion-tolerant recognition of handwritten of handwritten Hangul syllables. In the first step, nonlinear shape normalization is carried out to compensate for global shape distortions in handwritten characters, then a preliminary classification based on simple pattern matching is performed. In the next step, nonlinear pattern matching which achieves best matching between input and reference pattern is carried out to compensate for local shape distortions, then detailed classification which determines the final result of classification is performed. As the performance of recognition systems based on pattern matching methods is greatly effected by the quality of reference patterns. we construct reference patterns by combining the proposed nonlinear pattern matching method with a well-known averaging techniques. Experimental results reveal that recognition performance is greatly improved by the proposed two-step pattern matching method and the reference pattern construction scheme.

  • PDF

A Spectral Inverse Scattering Technique by Using Moment Method with Series-Expanded Basis (급수전개된 basis를 갖는 모멘트방법에 의한 파수영역의 역산란 방법)

  • Choi, Hyun-Chul;Kim, Se-Yun;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.446-449
    • /
    • 1988
  • A spectral inverse technique, which was developed by applying the pulse basis moment method procedure on the direct scattering problem in the reverse sequence for the reconstruction of complex permittivity profiles inside inhomogeneous dielectric objects, is modified to be applicable to the moment method with series-expanded basis. By performing numerical simulations for various type of dielectric objects, it is demonstrated that this inverse technique provides close reconstruction of permittivity profiles. Futhermore, compared to the previous scheme of the pulse basis, the presented method is shown to reduce the computation cost, relative error of reconstructed permittivity profiles by averaging in each cell, and the ill-posedness inherent to this inverse scattering problem.

  • PDF

Application of FPK Equation for Nonlinear Ship Rolling in Irregular Seas (불규칙 해상에서 선체의 비선형 횡요운동에 대한 FPK 방정식의 응용)

  • Sun-Hong Kwon;Jung-Han Chung;Tae-Il Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • The method presented in this paper predicts the rolling motion of ships due to wave action. The Forker-Planck-Kolmogrov(FPK) method is adopted to evaluate the probability density function of the rolling motion which is of vital importance for design purposes. The apprximate solution of the FPK equation is obtained through averaging procedure. The accuracy of the proposed method is demonstrated by comparing with Dalzell's simulation and those from Roberts method as well.

  • PDF

Elastic Wave Modeling Including Surface Topography Using a Weighted-Averaging Finite Element Method in Frequency Domain (지형을 고려한 주파수 영역 가중평균 유한요소법 탄성파 모델링)

  • Choi, Ji-Hyang;Nam, Myung-Jin;Min, Dong-Joo;Shin, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Abstract: Surface topography has a significant influence on seismic wave propagation in a reflection seismic exploration. Effects of surface topography on two-dimensional elastic wave propagation are investigated through modeling using a weighted-averaging (WA) finite-element method (FEM), which is computationally more efficient than conventional FEM. Effects of air layer on wave propagation are also investigated using flat surface models with and without air. To validate our scheme in modeling including topography, we compare WA FEM results for irregular topographic models against those derived from conventional FEM using one set of rectangular elements. For the irregular surface topography models, elastic wave propagation is simulated to show that breaks in slope act as a new source for diffracted waves, and that Rayleigh waves are more seriously distorted by surface topography than P-waves.

Formation Identification using Anisotropic Parameters from Sonic and Density Logs (음파검층과 밀도검층 자료에서 산출된 이방성 변수를 이용한 지층 구분)

  • Jang, Seonghyung;Kim, Tae Youn;Hwang, Seho
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.323-330
    • /
    • 2017
  • For the formation identification, surface geological survey, drill core analysis, core description and well log analysis are widely used. Among them well log analysis is a popular method with drill core analysis, since it measures continuously physical properties at in-situ. In this study we calculated Thomsen anisotropic parameters (${\varepsilon},\;{\delta},\;{\eta}$) after applying Backus averaging method to the P wave velocity, S wave velocity, and density logs. The well log data application of Blackfoot, Canada, shows the formation could be divided by 12 layers. This shows that Thomsen anisotropic parameters for identifying formation using anisotropic parameters is useful if there is no natural gamma log that is widely used for the formation identification.