Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.
In off-line phase of the preliminary Cut-off indoor positioning scheme, which is one of the indoor positioning scheme using the fingerprint, relative ranks of peak RSSIs received from beacons at each reference point are stored in the fingerprint map. In some reference points, signals of multiple beacons may be received. In this case, the relative ranks may be different when constructing fingerprint and when receiving signals in real-time. To solve this problem, we propose a method to utilize only up to five beacons with high ranking when constructing a fingerprint and when receiving signals in real-time and comparing them with stored information of a fingerprint. Experiments were conducted on the estimation probabilities and the average error when using this method. Those are compared with the previous methods. Experimental results show that the estimation probabilities and the average error are improved by removing only the remaining five beacons at each reference point of the fingerprint.
반도체 소자이론에 근거한 집적회로용 BJT의 역포화 전류 모델을 제시한다. 공정 조건으로부터 베이스 영역의 불순물 분포를 구하는 방법과 원형 에미터 구조를 갖는 Lateral PNP BJT와 Vertical NPN BJT의 베이스 Gummel Number를 정교하게 계산하는 방법을 제시한다. 제안된 방법의 타당성을 검증하기 위해 20V와 30V 공정을 기반으로 제작한 NPN BJT와 PNP BJT의 역포화 전류를 실측치와 비교한 결과, NPN BJT는 6.7%의 평균상대오차를 보이고 있으며 PNP BJT는 6.0%의 평균 상태오차를 보인다.
Recently, Owing to booming of leisure activities and national enforcement of 5-day workweek system, Korean government has been promoting rural tourism policy of which operating project's title is Green Rural Experience Village, Rural Traditional Theme Village, etc. In this study, ken investigation result on Green Rural Experience Village sites, an estimation model of returns by green-tourism activities was developed. The model was constructed through factor analysis and regression analysis method. Regression model developed can estimate green-tourism revenue by investment budget, homepage preengagement sales, homepage visitors, capacity of eating and drinking facilities, capacity of lodging facilities. The model developed was applied in sample villages. With these results, estimation revenue was recorded average 138.3% of survey revenue, and statistical significance was good(correlation coefficient $R^2$ = 0.8255, level of significance : 0.000), and the range of relative error was recorded largely from -7.1% to 158.6%, and average relative error was 38.3% and good. And, the model developed in this study have the critical point in aspects of insufficient data, but the results will be used in green-tourism policies and projects, and revenue estimation about each village in the present and future is limited, but in province or the whole country the application is good.
Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.
The Asian dust observation network operates β-ray attenuation samplers to measure PM10 concentrations. In addition, equivalence evaluation and accuracy inspection(Precision Tests) are conducted every year for the reliability of data. β-ray attenuation samplers(16 units) were comparatively observed from May to June 2020 and from July to December 2021. During the observation period, the average daily temperature was the lowest at 6.4℃ in December and the highest at 27.3℃ in August. The average daily humidity ranged from 60% to 100%, but the average daily humidity was over 75% from July to September. The minimum value of the PM10 Gravimetric method was 5.0 ㎍/m3, the maximum value was 53.4 ㎍/m3, and the average value was 17.8 ㎍/m3. The equivalence evaluation results of the PM10 Gravimetric method and β-ray attenuation samplers satisfied the criteria (slope: 1±0.1, intercept: 0±0.5). A relative error analysis between the PM10 Gravimetric method and β-ray attenuation samplers equipment showed that the relative error increased when the concentration was low and the temperature and humidity were high. In addition, in the β-ray attenuation samplers 5-minute interval observation data in May 2020, a relatively large Standard devication was shown as an average maximum ±23.4 ㎍/m3 and a minimum ±15.2 ㎍/m3. At standard deviations of 10% and 90%, equipment with high variability (deviation) was measured at 6 ㎍/m3and 61 ㎍/m3, and equipment with low variability was measured at 12 ㎍/m3 and 47 ㎍/m3. It was confirmed that concentration differences occurred due to differences in variability for each equipment.
This study aimed at developing a generalized model on the estimation of the long - term run - off volume for practical purpose. During the research period of last 3 years( 1986-1988), 3 types of estimation model on the long - term run - off volume(Effective rainfall model, unit hydrograph model and barne's model for dry season) had been developed by the author. In this study, through regressional analysis between determinant factors (bi of effective rainfall model, ai of unit hydrograph model and Wi of barne's model) and catchment characteris- tics(catchment area, distance round the catchment area, massing degree coefficient, river - exte- nsion, river - slope, river - density, infiltration of Watershed) of 11 test case areas by multiple regressional method, a new methodology on the derivation of determinant factors from catchment characteristics in the watershed areas having no hydrological station was developed. Therefore, in the resulting step, estimation equations on run - off volume for practical purpose of which input facor is only rainfall were developed. In the next stage, the derived equations were applied on the Kang - and Namgye - river catchment areas for checking of their goodness. The test results were as follows ; 1. In Kang - river area, average relative estimation errors of 72 hydrographs and of continuous daily run - off volume for 245 days( 1/5/1982 - 31/12) were calculated as 6.09%, 9.58% respectively. 2. In Namgye - river area, average relative estimation errors of 65 hydrographs and of conti- nuous daily run - off volume for 2fl days(5/4/1980-31/12) were 5.68%, 10.5% respectively. In both cases, relative estimation error was averaged as 7.96%, and so, the methodology in this study might be hetter organized than Kaziyama's formula when comparing with the relative error of the latter, 24~54%. However, two case studies cannot be the base materials enough for the full generalization of the model. So, in the future studies, many test case studies of this model should he carries out in the various catchment areas for making its generalization.
Communications for Statistical Applications and Methods
/
제28권4호
/
pp.351-368
/
2021
For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen's estimator (Shen et al., 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ2. The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen's estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen's estimator when σ2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ2 values.
본 연구에서는 표면영상유속계의 한계점으로 지적되어 온 야간이나 안개시 적용 문제를 해결하기 위해, 원적외선 카메라를 이용한 표면영상유속계의 적용성을 검토하였다. 이를 위해 각 조건에 대한 원적외선 카메라의 측정 정확도 평가 실험을 진행하였다. 정확도 평가는 기존에 검증이 된 주간 조건의 일반카메라를 이용한 표면영상유속계 측정 결과에 대한 상대 오차를 산정하여 평가하였다. 결과적으로 원적외선 카메라를 이용한 표면영상유속계의 야간 측정 상대 오차는 최대 4.3%, 평균 1% 내외로 매우 낮게 나타나 정확도가 높음을 확인하였고, 안개 조건 또한 최대 5.2%, 평균 2% 내외로 매우 높은 정확도를 보였다. 이에 따라 일반 카메라로 수면 흐름을 가시화할 수 없던 비가시 환경에서 원적외선 카메라를 이용하는 경우 높은 정확도로 측정이 가능할 것으로 판단된다.
In this paper, a triply-encoded Hadamard transform imaging spectrometer is proposed by applying the grill spectrometer to the Hadamard transform imaging spectrometer. The proposed system encodes the input radiation triply ; once through the input image mask and twice through the two masks in the grill spectrometer. We use an electro-optical mask in the grill spectrometer which is controlled by a left-cyclic simplex matrix. Then we modeled the system using $D^{-1}$ method. In this paper, the average mean square error associated with a recovered estimate is considered for performance evaluation. The relative performance is compared with those of the other conventional systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.