협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.
User-based and item-based approaches have been developed as the solutions of the movie recommendation problem. However, the user-based approach is faced with the problem of sparsity, and the item-based approach is faced with the problem of not reflecting users' preferences. In order to solve these problems, there is a research on the combination of the two methods using the concept of similarity. In reality, it is not free from the problem of sparsity, since it has a lot of parameters to be calculated. In this study, we propose a combining method that simplifies the combination equation of prior study. This method is relatively free from the problem of sparsity, since it has less parameters to be calculated. Thus, it can get more accurate results by reflecting the users rating to calculate the parameters. It is very fast to predict new movie ratings as well. In experiments for the proposed method, the initial error is large, but the performance gets quickly stabilized after. In addition, it showed about 6% lower average error rate than the existing method using similarity.
The peer-to-peer (P2P) systems have Brown significantly over last few years due to their hish potential of sharing various resources. Super-peer based P2P systems have been found very effective by dividing the peers into two layers, SP (Super-Peer) and OP (Ordinary-Peer). In this paper, we present ISP2P (Intelligent Super-peer based P2P system), which allows us to choose the best SP. Through analyzing capacity and similarity between SP and OP, we can help OPs to select the most appropriate SP respectively. Proposed system can improve the performance of the average response time by superior SP, reduce the bandwidth cost by small path length due to content similarity and solve frequent SP replacement problem by considering similarity of user behavior.
영상의 유사성에 대한 사용자의 주관적인지를 학습하는 방법으로 relevance feedback 기술이 사용되며, 최근 들어 이에 대한 관심이 높아지고 있다. 대부분의 relevance feedback기술은 영상 유사성을 측정하는데 사용되는 특징이 서로 독립적이라는 가정하고 있으나, 이러한 가정은 유사성 판단을 모델링 하는데 있어서 상당한 제약을 두는 것이다. 이 논문에서는. 퍼지 측정과 Choquet 적분을 이용하여, 유사성 판단에 대한 보다 나은 모델링 방법을 제안하고, 이를 이용한 relevance feedback 알고리즘을 제안한다. 실험결과를 통하여, 기존의 가중치 평균 방식에 의한 relevance feedback보다 제안된 방식이 우수함을 보인다.
기존의 협업필터링 추천시스템 연구는 상품에 대한 고객의 평점(rating)이나 구매 여부 데이터로부터 하나의 프로파일을 생성하고 이를 기반으로 추천 성능을 향상시킬 수 있는 새로운 알고리즘을 개발하는 위주로 진행되어 왔다. 그러나 빅데이터 환경이 도래하면서 기업이 수집할 수 있는 고객 데이터가 풍부해지고 다양해짐에 따라, 보다 정확하게 고객의 선호도나 행태를 파악하는 것이 가능하게 되었고 이러한 데이터, 즉 퍼스널 빅데이터(personal big data)를 추천시스템에 활용하는 연구의 필요성이 대두되고 있다. 본 연구에서는 마케팅의 시장세분화 이론에 근거하여 퍼스널 빅데이터로부터 고객의 선호도나 행태를 다양한 관점에서 표현할 수 있는 5종의 다중 프로파일(multimodal profile)을 개발하고, 이를 활용하여 협업필터링 추천시스템의 성능을 개선하고자 한다. 제안하는 5종의 다중 프로파일은 프로파일 통합 유사도, 개별 프로파일 유사도 평균, 개별 프로파일 유사도 가중 평균이라는 세 가지 앙상블 기법을 통해 협업필터링의 이웃(neighborhood) 탐색과정에 적용된다. 실제 퍼스널 빅데이터에 본 연구에서 제안하는 방법론을 적용한 결과, 단일 프로파일을 사용하는 협업필터링 알고리즘보다 추천 성능이 상당히 개선되었으며 앙상블 방법 중에서는 개별 프로파일 유사도 가중 평균 기법이 가장 높은 추천 성능을 보여주었다. 본 연구는 빅데이터 환경에서 추천시스템을 개발하고자 할 때, 어떠한 성격의 데이터로부터 고객의 특성을 규명하는 프로파일을 만들고 이를 어떻게 결합하여 사용하는 것이 효과적인 지 처음으로 제안하였다는 점에서 그 의의가 있다.
협업 필터링은 학계나 산업계에서 우수한 성능으로 인해 많이 사용되는 추천기법이지만, 정량적 정보인 사용자들의 평가점수에만 국한하여 추천결과를 생성하므로 간혹 정확도가 떨어지는 문제가 발생한다. 이에 새로운 정보를 추가로 고려하여, 협업 필터링의 성능을 개선하려는 연구들이 지금까지 다양하게 시도되어 왔다. 본 연구는 최근 Web 2.0 시대의 도래로 인해 사용자들이 구입한 상품에 대한 솔직한 의견을 인터넷 상에 자유롭게 표현한다는 점에 착안하여, 사용자가 직접 작성한 리뷰를 참고하여 협업 필터링의 성능을 개선하는 새로운 추천 알고리즘을 제안하고, 이를 스마트폰 앱 추천 시스템에 적용하였다. 정성 정보인 사용자 리뷰를 정량화하기 위해 본 연구에서는 텍스트 마이닝을 활용하였다. 구체적으로 본 연구의 추천시스템은 사용자간 유사도를 산출할 때, 사용자 리뷰의 유사도를 추가로 반영하여 보다 정밀하게 사용자간 유사도를 산출할 수 있도록 하였다. 이 때, 사용자 리뷰의 유사도를 산출하는 접근법으로 중복 사용된 색인어의 빈도로 산출하는 방안과 TF-IDF(Term Frequency - Inverse Document Frequency) 가중치 합으로 산출하는 2가지 방안을 제시한 뒤 그 성능을 비교해 보았다. 실험결과, 제안 알고리즘을 통한 추천, 즉 사용자 리뷰의 유사도를 추가로 반영하는 알고리즘이 평점만을 고려하는 전통적인 협업 필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인할 수 있었다. 아울러, 중복 사용 단어의 TF-IDF 가중치의 합을 고려했을 때, 단순히 중복 사용 단어의 빈도만을 고려했을 때 보다 조금 더 나은 예측정확도를 얻을 수 있음도 함께 확인할 수 있었다.
모양 기반 검색이란 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 시퀀스(서브시퀀스)를 데이터베이스 내에서 검색하여 내는 연산이다. 본 논문에서는 시계열 데이터베이스에서의 모양 기반 검색을 위한 유연성 있는 새로운 유사 모델을 정의하고, 이 유사 모델을 지원하기 위한 인덱싱 및 질의 처리 방안을 제시한다. 제안된 유사 모델에서는 정규화, 이동 평균, 타임 워핑 등 다양한 변환을 지원한다. 특히 최종 유사 정도를 계산하기 위하여 사용되는$L_p$거리 함수론 사용자가 임의로 지정하도록 함으로써 응용에서 선호하는 유사 모델을 반영할 수 있다. 또한 이러한 모양 기반 검색을 효과적으로 지원하기 위한 압축된 서브시퀀스 트리 구조를 제안하고, 이를 기반으로 하는 효율적인 질의 처리 기법을 제시한다. 실험 결과에 의하면 제안된 기법은 진의 시퀀스와 모양이 유사한 서브시퀀스들을 사용자에 의하여 선택된 거리 함수를 사용하여 성공적으로 검색할 뿐 아니라, 순차 검색과 비교하여 거리 함수 선택에 따라 수 십배에서 수 백배까지의 성능 개선 효과를 갖는 것으로 나타났다.
Purpose: During 2015-2019, the average amount of political donation to the national assembly members in Korea was 1,000 won per person. Despite its benefits such as receiving tax credits, the donation system has not been actively practiced. This paper aims to promote political donations by suggesting a recommendation system of national assembly members by analysing the bills they proposed. Methods: In this paper, we propose a recommendation system based on two aspects: how similar the newly proposed or ammended bills are to the sponsors' interest (similarity index) and how much effort national assembly members put into those bills (intensity index). More than 25,000 bills were used to measure the recommendation quality index consisted with both the similarity and the intensity indices. Word2vec was used to calculate the similarity index of the bills proposed by the national assembly member to the sponsor's interest. The intensity index is calculated by diving the number of newly proposed or entirely revised bills with the number of senators who took part in those bills. Subsequently, we multiply the similarity index by the intensity index to obtain the recommendation quality index that can assist sponsors to identify potential assembly members for their donation. Results: We apply the proposed recommendation system to personas for illustration. The recommendation system showed an average f1 score about 0.69. The analysis results provide insights in recommendation for donation. Conclusion: n this study, the recommendation system was proposed to promote a political donation for national assembly members by creating the recommendation quality index based on the similarity and the intensity indices. We expect that the system presented in this paper will lower user barriers to political information, thereby boosting political sponsorship and increasing political participation.
추천 시스템의 여러 구현 기법들 중 협력 필터링은 과거 평가 이력을 토대로 유사성이 높은 인접 이웃들을 선정하여, 그들이 선호했던 상품들을 추천하는데, 많은 상업 사이트에서 성공적으로 활용되고 있다. 유사도의 정확한 측정은 시스템의 성능을 좌우하는 매우 중요한 요소이다. 기존에 다양한 방식의 유사도 척도들이 개발되었는데, 대개 전통적인 유사도 척도와 기개발된 여러 계수들과의 통합 방식이었다. 본 연구에서는 새로운 방식의 유사도 척도를 제안한다. 두 사용자 간의 공통 평가 영역을 평가치 크기에 따라 분할하여 각 부분 영역별로 유사도를 측정하고 이들을 가중 통합함으로써, 유사한 영역이 구체적으로 파악되어 최종 유사도값에 반영된다. 두 종류의 개방형 데이터셋을 활용한 성능을 측정하였고, 그 결과 특히 밀집 데이터셋에서 제안 방법의 예측 정확도, 순위 정확도, 평균 정밀도 성능이 기존보다 우수하였다. 제안 척도는 다양한 상업 시스템에서 사용자들의 선호에 보다 적합한 상품을 추천하는데 유용하게 활용될 것으로 기대한다.
Kim, Young-Sum;Kim, Yong-Sung;Kim, Whoi-Yul;Kim, Myung-Joon
ETRI Journal
/
제21권1호
/
pp.40-54
/
1999
In this paper, we describe a new trademark retrieval system based upon the content or the shape of trademark. The system has an on-line graphical user interface for the World Wide Web (WWW) that allows user to provide a query in forms of a sketch or a visual image to search for similar trademarks from database. User interfaces for the WWW were implemented by utilizing HTML and Java applets. The query can occur in arbitrary size and orientation. A shape representation scheme invariant to scale and rotation was developed to measure the similarity between two trademarks using the magnitude of Zernike moments as a feature set. Performance evaluation has been carried out with a database of 3,000 trademarks. It takes only about 0.6 second for the retrieval on a 200 MHz Pentium PC. The average recall of the original one among top 30 candidates queried by noisy or deformed images was 100%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.