• Title/Summary/Keyword: Average Moments

Search Result 74, Processing Time 0.021 seconds

Application for a BWIM Algorithm Using Density Estimation Function and Average Modification Factor in The Field Test (밀도추정함수와 평균보정계수를 이용한 BWIM 알고리즘의 현장실험 적용)

  • Han, Ah Reum Sam;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.70-78
    • /
    • 2011
  • The paper aims at developing a more reliable and accurate BWIM(Bridge Weigh-In-Motion) algorithm using measured strain data and examining its efficiency with various tests on bridges. It proposes a BWIM algorithm using density estimation function and average modification factor for moment-strain relationship. Density estimation function has been proved to be reliably applied when multiple axle loads are estimated. An average modification factor is applied to minimize overall error that can be encountered between theoretically computed moments and measured strains at multiple locations in a bridge. The developed algorithm has been successfully examined through numerical simulations, laboratory tests, and also by field tests on a multi-girder composite bridge.

Charactor Image Retrieval Using Color and Shape Information (컬러와 모양 정보를 이용한 캐릭터 이미지 검색)

  • 이동호;유광석;김회율
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • In this paper, we propose a new composite feature consists of both color and shape information that are suitable for the task of character image retrieval. This approach extracts shape-based information using Zernike moments from Y image in YCbCr color space. Zernike moments can extract shape-based features that are invariant to rotation, translation, and scaling. We also extract color-based information from the DCT coefficients of Cr and Cb image. This approach is good method reflecting human visual property and is suitable for web application such as large image database system and animation because higher retrieval rate has been achieved using only 36 features. In experiment, this method is applied to 3,834 character images. We confirmed that this approach brought about excellent effect by ANMRR(Average of Normalized, Modified Retrieval Rank), which is used in the evaluation measure of MPEG-7 color descriptor and BEP(Bull's Eye Performance), which is used in evaluation measure of shape descriptor in character image retrieval.

  • PDF

A Study on Inelastic Whipping Responses in a Navy Ship by Underwater Explosion (수중 폭발에 의한 함체의 비탄성 휘핑 응답에 관한 연구)

  • Kim, Hyunwoo;Seo, Jae Hoon;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.400-406
    • /
    • 2021
  • The primary effect of the far-field underwater explosion (UNDEX) is the whipping of the ship hull girder. This paper aims to verify why inelastic effects should be considered in the whipping response estimations from the UNDEX simulations. A navy ship was modeled using Timoshenko beam elements over the ship length uniformly keeping the constant midship section modulus. The transient UNDEX pressure was produced using two types of the Geers-Hunter doubly-asymptotic models: compressible and incompressible fluids. Because the UNDEX model based on incompressible fluid assumption provided more increased fluid volume acceleration in the bubble phase, the incompressible fluid-based UNDEX model was adopted for the inelastic whipping response analyses. The non-linear hull girder bending moment-curvature curve was used to embed inelastic effects in the UNDEX analyses where the Smith method was applied to derive the non-linear stiffness. We assumed two stand-off distances to see more apparent inelastic effects: 40.5 m and 35.5 m. In the case of the 35.5 m stand-off distance, there was a statistically significant inelastic effect in terms of the average of peak moments and the average exceeding proportional limit moments. For the conservative design of a naval ship under UNDEX, it is recommended to use incompressible fluid. In the viewpoint of cost-effective naval ship design, the inelastic effects should be taken into account.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

A STUDY ON THE MANDIBULAR MOMENTS ACCORDING TO ANTERO-POSTERIOR PLACEMENT OF PIVOT ON LOWER NATURAL DENTITION (자연치열에 설치한 pivot의 전후방 일치변화에 따른 하악의 moment에 관한 연구)

  • Lee Hyun-Shick;Park Nam-Soo;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.394-410
    • /
    • 1993
  • This study was accomplished for appreciation of the mandibular moments according to antero- posterior movement of pivot placed on the lower natural dentition. For this study, 20 subjects(male, $21\sim30$ yrs., average age 24) in the category of normal occlusion were selected, and the intraoral Vitallium clutches were cast and fabricated for each subjects. A 2-dimension PSD(Position Sensitive Detector, Hamamatsu Photonics Co., Japan) was attached to maxillary clutch in a mode of three dimensional control and LED (Light Emit Diode, Hamamatsu Photonics Co., Japan) was set up on mandibular clutch. Both clutches were set into oral cavity of each subjects and adjusted. Then the subjects were allowed to intercuspated with maximal bite force while the pivoting ball in the mid-line moving from anterior toward posterior position. The displacement scales were recorded by CCD camera(Sony, CCD-TR-705) and VCR, The conclusions were as follows : 1. When the subject was allowed to bite the metal pivoting ball in the midline of lower dentition with maximal bite force voluntarily while moving from lower central incisor to canine, 1st premolar, End premolar, 1st molar and 2nd molar. The lever actions on the pivot were revealed in all subjects. The equilibrium of moment were revealed on the pivots of 1st premolar(14 subjects), End premolar(4 subjects), and canine(2 subjects) areas. 2. The changes of loading on the TMJ according to antero-posterior positional changes of metal pivoting ball were able to recognize as follow. Compression on the TMJ was increased when the pivot moves anteriorly from the equilibrium point, and tension on the TMJ was increased when posteriorly. 3. 13 subjects were recognized their habitual chewing sides(Rights, Left8), and 7 subjects were not. During maximal biting, mandible was displaced toward their habitual chewing sides on the metal pivoting ball in the frontal plane. 4. In cephalometric analysis, the average genial angle of 20 subjects was $116.75^{\circ}$ and the average mandibular body length was 79.77mm. The equilibrium points of mandibular moment were positioned more posteriorly in the subjects having larger Genial angle than in the smaller(p<0.05). Relationships among the angle between FH plane and occlusal plane, the angle between occlusal plane and mandibular plane , and mandibular body length were not significant(p>0.05).

  • PDF

Predicting Successful Defibrillation in Ventricular Fibrillation using Wave Analysis and Neuro-fuzzy

  • Shin Jae-Woo;Lee Hyun-Sook;Hwang Sung-Oh;Yoon Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.47-52
    • /
    • 2006
  • The purpose of this study was to predict successful defibrillation in ventricular fibrillation using parameters extracted by wave analysis method and neuro-fuzzy. Total 15 dogs were tested for predicting successful defibrillation. Feature parameters were extracted for return of spontaneous circulation (ROSC) and non-ROSC by wave analysis method, and these parameters are an irregularity factor, spectral moments, mean power of level-crossing spectrum, and mean of alpha-significant value. Additionally, two parameters by analyzing method of frequency were extracted into a mean of power spectrum and a mean frequency. Then extracted parameters were analyzed in which parameters result to have high performance of discriminating ROSC and non-ROSC by a statistical method of t-test. The average of sensitivity and specificity were 62.5% and 75.0%, respectively. The average of positive predictive factor and negative predictive factor were 61.2% and 75.8%, respectively.

Analysis of the Structural Behaviors of Tunnel Linings in Joomunjin Standard Sand by Centrifugal Model Tests (원심모형실험에 의한 사질토 지반내 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.161-168
    • /
    • 1999
  • A series of centrifuge model tests were performed in order to investigate the behaviors of various tunnel linings. A 1/100-scaled aluminum and hydrostone horseshoe tunnel linings with a radius km, height km were buried in a depth of C/D=3 with dry Joomunjin standard sand, the relative density of which was 86%. Bending moments and thrusts along the tunnel circumference were measured by 12 strain gages. Earth pressures in soil and on lining were estimated by pressure transducers, ground surface settlements at center and edges by using LVDTs. Average Ko(coefficient of earth pressure at rest) was 0.39 for the model sand. The structural behaviors of lining depended on its damaged conditions. But, as a rule, on the crown, the tensile circumferential strain of lining occurred at the inner surface, and the compressive at the outer surface, then positive bending moment was created at the crown. The circumferential strain of the inner surface on the springline was tensile, and the outer compressive, so negative bending moment was measured at the springline. For hydrostone linings, cracks initiated at the inner surface on the crown, and the outer on the springline over average 40g.

  • PDF

A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox (풍력발전기 증속기에 전달되는 풍하중 변동특성 연구)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, normal wind load and blast wind load are modeled mathematical. And the periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train. In normal wind load case, excitation frequency is 3X (X : Rotor speed). When the wind direction is $+22.5^{\circ}$, the horizontal axis of bending moment occur the 50% of main torque. This result leads to edge contact of gear teeth by shaft elastic deformation. In blast wind load case, excitation frequency are 3X,6X,9X. Additional, in the (+) direction of wind load, relative harmonic percentage is increase.

Simplified Analysis of Superstructure Section Considering Diaphragm and Optimum Design Conditions for ILM Bridge (다이아프램이 고려된 ILM 교량 상부단면의 단순해석 및 최적설계조건)

  • Lee, Hwan-Woo;Park, Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • ILM(Incremental Launching Method) bridges pass both the middle of spans and supports during launching. The launching noses are used to minimize the maximum positive moments and negative moments of the superstructure occurring during launching for ILM bridges. In this study, the simplified analysis formula considering diaphragm to calculate the bending moment that occurs during launching is induced and analyzes the optimum design conditions considering diaphragm. The accuracy of the proposed simplified analysis formular compared to the MIDAS Civil has an error of less than 5%. There is a difference up to 13% in the moment between the cases when the diaphragm is considered and is not. In addition, the criteria for deciding the unit weight of equivalent cross section and average stiffness value of equivalent cross section that can be applied to the simplified analysis formula is proposed. In this study, an effective way to optimize the launching nose is proposed that the optimum design is taken in the condition of minimizing the negative moment because of the mechanic characteristic of ILM bridges.

An Analytical Study of Flange Local Buckling of Horizontally Curved I-Girders for Estimate Resonable Stress Gradient (합리적 응력경도 산정을 위한 수평 곡선 I-형 거더의 플랜지 국부좌굴의 해석적 연구)

  • Kim, Hee-Soo;Lee, Kee-Sei;Lee, Jeong-Hwa;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6504-6510
    • /
    • 2015
  • Horizontally curved I-girders are subjected to not only bending moments but also torsional moments. The torsional moment of the plate girder is addition of St. Venant torsion and non-uniform torsion. In the flange of I-shaped plate girder, a kind of open-section, the normal stresses is not distributed uniformly due to the non-uniform torsion. Because of that, one of compression flange tip can be yielded faster than the flange of general straight girder. In other words, the flange local buckling strength is decreased when the girder has initial curvature. In this paper, the numerical analysis is conducted to investigate the average stresses in flange for curved girders. The subtended angle and slenderness ratio are taken as parameters.