• Title/Summary/Keyword: Average Grain

Search Result 1,140, Processing Time 0.025 seconds

Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting (벼 등숙기 기온 및 수발아가 종실 품질 및 이화학적 특성에 미치는 영향)

  • Lee, HyeonSeok;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lee, ChungGen;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.294-302
    • /
    • 2020
  • Studies on the occurrence of rice preharvest sprouting (PHS) have primarily focused on temperature and rainfall duration at the time of PHS induction, but average temperature during grain filling can have a great influence on PHS. This study analyzed the effect of average temperature during grain filling on PHS occurrence and subsequent changes in grain quality after PHS. For two consecutive years, average temperature differences during grain filling were produced by varying the transplanting date. Artificial rainfall was treated under identical accumulated temperatures of 1200℃ after heading. It was confirmed that the occurrence of PHS was higher under high average temperature conditions during grain filling. In addition, the degree of grain quality reduction caused by PHS occurred more severely under high temperature conditions during grain filling. In order to reduce the risk of PHS occurrence and subsequent quality damage, it is important to control the planting date to avoid high-temperature conditions during grain filling.

An Analysis of Micro-landform and Its Grain Size of Tidal Flat in Gomso-Bay using Satellite Remote Sensing (위성원격탐사를 이용한 곰소만 간석지의 미지형과 퇴적물 입도특성 분석)

  • Jo, Wha-Rhong;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.44-56
    • /
    • 2000
  • Through the ISODATA method of unsupervised classification, the micro-landform of Gomso-Bay tidal flat was classified into mud, mixed, and sand flats by using Landsat TM image. Each tidal flat shows on apparent differences in its topographical characteristics and grain size compositions. Mud flat is occupied the innermost part of the tidal flat. Sand flat is distributed adjacent to the entrance of the bay, while the mixed one is located in the central part of the bay. Mud flat deposits have fine grain size, more than 4 in average mean phi, bad sorting, more than 1 phi in standard devation, and positive skewness. Mixed and sand flat deposits have coarse grain size, less than 4 average mean phi, good sorting, less than 1 phi in standard daviation, and negative skewness. Topographically, the mud flat consists of flat surfaces and dissected channels. The average depth of dissected channels is about 2 meters. Meanwhile, sand flat has a very flat landform with well-developed ripple marks of less than 10 centimeters in average relief. And the mixed one shows the intermediate topographical characteristics of those of mud and sand flats.

  • PDF

Fabrication and Characteristics of Y-TZP/Ce-TZP Structural Ceramics (Y-TZP/Ce-TZP 구조세라믹스의 제조 및 특성연구)

  • 이종현;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1177-1185
    • /
    • 1996
  • Y-TZP/Ce-TZP ceramics having relative sintered densities of>95% average grain sizes of 0.36$\mu\textrm{m}$ microhar-dness of 1150 kg/mm2 fracture strength of 390-830 MPa and toughness of 6.4-10.2 MPa$.$mm1/2 were prepared by conventional sintering of 3 mol% Y2O3-ZrO2 and 12 mol% CeO2-ZrO2 powders at 1400 and 1500$^{\circ}C$ The average grain sizes of Y-TZP/Ce-TZP ceramics were mainly governed by those of Ce-TZP. White increasing Ce-TZP content toughness increased while microhardness and fracture strength decreased. With comparing microhardness and toughness fracture strength was more sensitive on not only grain size but also other factors such as microstructural and compositional variations. The densification of Y-TZP/Ce-TZP cermaics was not greatly affected by composition and soaking time at temperature over 1400$^{\circ}C$ With increasing CE-TZP content the stability of t-ZrO2 decreased under thermal aging in air whereas increased in hydrothermal atmosphere and aqueous solution.

  • PDF

Genetic Ana1ysis for Rice Grain Properties Using a Doubled Haploid Population

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.123-128
    • /
    • 2007
  • Demand for high quality rice has always been a major factor in the international rice marketing. In the present study, doubled haploid (DH) population derived from anther culture of a Tongil/japonica hybrid was used for genetic analysis of rice grain quality. The average values of DH lines for grain weight, grain length and the ratio of grain length to width were near the mid-parent value. More than 40% DH lines showed transgressive segregation for grain weight, length, amylose and lipid content, but less than 10% DH lines observed on ratio of length to width and grain thickness were transgressive segregation. Correlation analysis between appearance qualities and physicochemical characters indicated that grain width and grain thickness both significantly and negatively correlated to protein and lipid content. A highly significant negative correlation between protein content and amylose content was observed.

Inheritance of Grain Weight and Size of a High Yielding Japonica cultivar, Sobibyeo (자포니카 다수성 품종 소비벼의 입중과 입형의 유전)

  • Tae Hwan Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.142-146
    • /
    • 2003
  • To obtain information on the inheritance of grain weight and grain size of japonica cultivar, Sobibyeo which has high yielding potential and large grain in rice, the genetic variation, heritability and phenotypic correlation of 1,000 grain weight, grain length, width and thickness were investigated in two crosses, Iksan 429/Sobibyeo and Iksan 430/Sobibyeo. The gram characteristics of $\textrm{F}_1$ hybrids exceeded mid-parental values, while grain length: width ratio was intermediate between the parents. In $\textrm{F}_2$ populations, the average grain length, width and thickness were intermediate as mid-parental values, but grain weight exceeded the mid-parental values. In $\textrm{F}_2$ populations of Iksan 429/Sobibyeo and Iksan 430/Sobibyeo, mean 1,000 grain weights were 24.86g and 25.04 g on the average, and ranged 18.4g-32.2g and 19.5g-33.4g, respectively. The segregation mode for grain weight was regarded as a nearly normal distribution in two crosses of $\textrm{F}_2$ populations. Estimates of broad sense heritabilities for grain weight in Iksan 429/Sobibyeo and Iksan 430/Sobibyeo were high as 89.00% and 89.06%, and grain length showed the highest heritability among grain characteristics as 97.45% and 97.35%, respectively. Grain weight was highly correlated with grain length, width and thickness, and grain length was highly correlated with grain width and thickness. These grain characteristics were apparently controlled by polygenes. Accordingly, these traits will be readily improved through selection in the early segregating generations.

NONUNIFORMITY OF GRAIN BOUNDARIES IN ZnO VARISTORS (ZnO 바리스터에서 입계의 전기적 불평등성에 관한 연구)

  • ;He Jin-Liang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.98-101
    • /
    • 1997
  • The nonuniformity of electrical characteristics of grain boundaries in ZnO varistors wei\ulcorner systematically analyzed. The high nonuniformity exist in barrier voltages and nonlinearity coefficients among different grain boundaries. The barrier voltages have normal distributions, only a few grain boundaries were electrically active, and the grain boundaries can be simply classified into good, bad, and ohmic ones according to the electrical characteristics of grain boundaries. The average barrier voltage is equal to 3.3 V by direct method, but it is only 2.3 V by indirect method. There is a high difference between the barrier voltages by direct and indirect measurement methods. The A1$_2$O$_3$ dopants affect the electrical characteristics of grain boundaries by changing the electron status In grain boundary and intragrain.

  • PDF

A Development of High-Durability Copper Foil Materials for Clock Spring Cable Using Grain Size Control Techniques (결정립 제어 기술을 이용한 클락스프링 케이블용 고내구 동박 소재 개발)

  • Chae, Eul Yong;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.20-25
    • /
    • 2021
  • Flexural resistance evaluation of FFC (Flexible Flat Cable) was performed according to the grain size of rolled copper foil by adding 0.1wt% silver (Ag) and electrodeposited copper foil by slitting method after heat-treatment. These methods are aimed at enhancing the flexural durability of the FFC by growing the grain size of copper foil. By increasing the grain size of the copper foil and minimizing the miss-orientation at grain boundaries, the residual stress at the grain boundaries of the copper foil is reduced and the durability of the FFC is improved. Maximizing an average grain size of copper foil can be got a good solution in order to enhance the durability of the FFC or FPCB (Flexible Printed Circuit Board).

Measurement of WC Grain Size in Nanocrystalline WC-10Co Hardmetal

  • Chenguang, Lin;Guansen, Yuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.344-345
    • /
    • 2006
  • The linear intercept (LI) method was used to quantitatively measure the intercepts of WC grains in nano-grained WC-10Co hardmetal. When the surveyed intercept numbers of WC grain exceeded 200, the statistic data for the mean grain size of WC were reproduced. The discriminative minimal grain size of used LI method was 12 nm; the maximum intercept of WC grain was 109 nm; the average intercept of WC grains was 45 nm and the corresponding 3D mean grain size of WC was 70 nm which is agreeable with the XRD outcome.

  • PDF

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

A Study on the Performance of Flat-plate Solar Air Collector and its Application to Grain Drying (평면식 태양열집열기를 이용한 곡물 건조개선에 관한 연구)

  • 민영봉;최규홍
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.114-125
    • /
    • 1978
  • The use of petroleum fuels in grain drying causes problems of high cost and management. To solve these problems, it is required to study on soLar energy as an alternative to petroleum fuels for grain drying. The purposes of this study were to find out the optimum received area and air flow rate of a flat-plate solar air collector for grain drying and to assess its effects on grain drying with a small grain bin. The results of this study are summarized as follows ; 1. The calculated optimum tilt angles of the collector in the summer and autumn drying seasons were 20 and 50 degress, respectively, in suwon area. 2. The outlet temperature of the collector was $36^\circ C$ on the daily average with the maximum of $36^\circ C$ at 12:00 o clock. Solar radiation on the collector surface was 1.04 ly( 1 langley = 1 cal/$cm^2$) per minute on the daily average and 1.30 ly per minute on the maximum at 11:00am. The thermal efficiency of the collector was 62.4 percent on the daily average, and the air flow-rate per unit receiving are was 1.03 $m^3$/min/$m^2$.4. The calculated optimum receiving area and the air flow-rate per unit cubic volume for paddy in autumn drying season was 2 $m^2$ and 2$m^3$/min , respectively. 5. not significantly difference in the collector efficiency was appeared between the rotating and fixed type of solar collector. 6. For drying of wheat with 0.6 meter of the depth in the bin, approximately 9 hours were required to reduce the moisture content from 21.6% to 13% with air follow rate of 5 $m^3$/min an initial moisture per cubic meter of wheat and with air temperature of $52^\circ C$. 7. In the drying test of rough rice with a turning operation in a grain bin approximately 21 hours were required to reduced the moisture from 21% to 14.5% with airflow rate of 2 $m^3$/min per cubic meter of rice and the air temperature of $43.5^\circ C$. 8. Over-drying at the bottom and less -drying at the top of the grain mass was resulted from the high -temperature of drying air which was obtained from the flat-plate solar collector in this test. An appropriate operation should be prepared for the uniform moisture of the grain in the bin.

  • PDF