• Title/Summary/Keyword: Autoregressive moving average model

Search Result 151, Processing Time 0.027 seconds

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

Autocovariance based estimation in the linear regression model (선형회귀 모형에서 자기공분산 기반 추정)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.839-847
    • /
    • 2011
  • In this study, we derive an estimator based on autocovariance for the regression coefficients vector in the multiple linear regression model. This method is suggested by Park (2009), and although this method does not seem to be intuitively attractive, this estimator is unbiased for the regression coefficients vector. When the vectors of exploratory variables satisfy some regularity conditions, under mild conditions which are satisfied when errors are from autoregressive and moving average models, this estimator has asymptotically the same distribution as the least squares estimator and also converges in probability to the regression coefficients vector. Finally we provide a simulation study that the forementioned theoretical results hold for small sample cases.

Prediction of Ozone Formation Based on Neural Network and Stochastic Method (인공신경망 및 통계적 방법을 이용한 오존 형성의 예측)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.

  • PDF

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

Forecasting the Korea's Port Container Volumes With SARIMA Model (SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측)

  • Min, Kyung-Chang;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.600-614
    • /
    • 2014
  • This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.

A Study on the Development of Prediction Method of Ozone Formation for Ozone Forecast System (오존예보시스템을 위한 오존 발생량의 예측기법 개발에 관한 연구)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • To verify the performance and effectiveness of bilinear model for the development of ozone prediction system, the simulation experiments of the model identification for ozone formation were performed by using bilinear and linear models. And the prediction results of the ozone formation by bilinear model were compared to those of linear model and the measured data of Seoul. ARMA(Autoregressive Moving Average) model was used in the model identification. A recursive parameter estimation algorithm based on an equation error method was used to estimate parameters of model. From the results of model identification experiment, the ozone formation by bilinear model showed good agreement with the ozone formation from the simulator. From the comparison of the prediction results and the measured data, it appears that the method proposed in this work is a reasonable means of developing real-time short-term prediction of ozone formation for an ozone forecast system.

  • PDF

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

Estimating Monthly Tourist Population for Analysis of Green Tourism Potential in Village Level - A Case Study of Hahoe Village - (그린투어리즘 포텐셜 분석을 위한 관광마을 수준의 월별 방문객 추정 - 하회마을을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik;Kim, Yong-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • 본 연구에서는 ARIMA(Autoregressive Integrated Moving Average) 모델을 이용하여 농촌관광마을의 월별 관광객을 추정하였다. 단일 마을에 대한 시계열 자료를 경상북도 안동시에 위치한 하회마을을 대상으로 구축하였다. 월별 시계열 자료는 2000년부터 2010년까지 구성되었는데(2008년도 누락), 2000년에서 2007년까지 자료는 최적 모델의 도출에 나머지는 예측치의 검정에 사용되었다. 연구 결과 최적모델에 필요한 시계열 자료의 길이는 6년으로 나타났으며, 최적모델은 계절성을 고려한 SARIMA(2,1,1)(1,1,2)12로 나타났다. 최적 시계열 년수로 나타난 6년을 사용하여 2000-2005, 2001-2006, 그리고 2002-2007의 자료로부터 각각 SARIMA(2,1,1)(1,1,2)12를 도출하여, 차기년도들에 대한 예측결과를 비교한 결과, 높은 $R^2$값을 보였다.

Bayes Inference for the Spatial Time Series Model (공간시계열모형에 대한 베이즈 추론)

  • Lee, Sung-Duck;Kim, In-Kyu;Kim, Duk-Ki;Chung, Ae-Ran
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2009
  • Spatial time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations. In this paper, We estimate the parameters of spatial time autoregressive moving average (SIARMA) process by method of Gibbs sampling. Finally, We apply this method to a set of U.S. Mumps data over a 12 states region.