DOI QR코드

DOI QR Code

Estimating Monthly Tourist Population for Analysis of Green Tourism Potential in Village Level - A Case Study of Hahoe Village -

그린투어리즘 포텐셜 분석을 위한 관광마을 수준의 월별 방문객 추정 - 하회마을을 중심으로 -

  • Gao, Yujie (Department of Agricultural Engineering, Graduate School, Chungnam Nat'l Univ.) ;
  • Kim, Dae-Sik (Department of Agricultural Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Yong-Hoon (Department of Agricultural Engineering, Graduate School, Chungnam Nat'l Univ.)
  • 고옥결 (충남대학교 대학원) ;
  • 김대식 (충남대학교 농업생명과학대학 지역환경토목학과) ;
  • 김용훈 (충남대학교 대학원)
  • Received : 2010.08.09
  • Accepted : 2011.02.08
  • Published : 2011.03.20

Abstract

본 연구에서는 ARIMA(Autoregressive Integrated Moving Average) 모델을 이용하여 농촌관광마을의 월별 관광객을 추정하였다. 단일 마을에 대한 시계열 자료를 경상북도 안동시에 위치한 하회마을을 대상으로 구축하였다. 월별 시계열 자료는 2000년부터 2010년까지 구성되었는데(2008년도 누락), 2000년에서 2007년까지 자료는 최적 모델의 도출에 나머지는 예측치의 검정에 사용되었다. 연구 결과 최적모델에 필요한 시계열 자료의 길이는 6년으로 나타났으며, 최적모델은 계절성을 고려한 SARIMA(2,1,1)(1,1,2)12로 나타났다. 최적 시계열 년수로 나타난 6년을 사용하여 2000-2005, 2001-2006, 그리고 2002-2007의 자료로부터 각각 SARIMA(2,1,1)(1,1,2)12를 도출하여, 차기년도들에 대한 예측결과를 비교한 결과, 높은 $R^2$값을 보였다.

Keywords

References

  1. Chang, Y. W. and M. Y. Liao, 2010, A seasonal ARIMA model of tourism forecasting: The Case of Taiwan, Asia Pacific Journal of Tourism Research, 15(2), 215-221. https://doi.org/10.1080/10941661003630001
  2. Che, J. and J. Wang, 2010, Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling, Energy Conversion and Management, 51, 1911-1917. https://doi.org/10.1016/j.enconman.2010.02.023
  3. Chen, K. Y. and C. H. Wang, 2007, Support vector regression with genetic algorithms in forecasting tourism demand, Tourism Management, 28, 215-226. https://doi.org/10.1016/j.tourman.2005.12.018
  4. Cho, M. H. and H. J. Jang, 2005, A study on residents' attitudes to the utilization of traditional culture as tourism resources: Based on Jirisan Cheonghak-dong and Hahoi Village, Journal of Tourism and Leisure Research, 17(1), 133-154 (in Korean).
  5. Cho, T. Y. and T. Y. Seo, 2009, Effect of Cultural Tour Experience Hahoe Village at Andong on Touring Satisfaction and Behavioral Intention, The Journal of the Korea Contents Association, 9(7), 361-370 (in Korean). https://doi.org/10.5392/JKCA.2009.9.7.361
  6. Cho, V., 2001, Tourism forecasting and its relationship with leading economic indicators, Journal of Hospitality and Tourism Research, 25, 399-420. https://doi.org/10.1177/109634800102500404
  7. Cho, V., 2003, A comparison of three different approaches to tourist arrival forecasting, Tourism Management, 24, 323-330. https://doi.org/10.1016/S0261-5177(02)00068-7
  8. Gil-Alana, L. A., 2005, Modelling international monthly arrivals using seasonal univariate longmemory processes, Tourism Management, 26, 867-878. https://doi.org/10.1016/j.tourman.2004.05.003
  9. Goh, C. and R. Law, 2002, Modeling and tourist arrival forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention, Tourism Management, 23, 499-510. https://doi.org/10.1016/S0261-5177(02)00009-2
  10. Huang, J. H. and J. C. H. Min, 2002, Earthquake devastation and recovery in tourism: The Taiwan case, Tourism Management, 23, 145-154. https://doi.org/10.1016/S0261-5177(01)00051-6
  11. Hyun, Y. H., S. H. Han, and H. J. Huh, 2005, Relationship between the destination image formation and tourist behaviour based on familiarity index: A study of Hahoe Village, International Journal of Tourism Sciences, 29(1), 147-167 (in Korean).
  12. Jia, J. S., J. Z. Zhao, H. B. Deng, and J. Duan, 2010, Ecological footprint simulation and prediction by ARIMA model-A case study in Henan Province of China, Ecological Indicators, 10, 538-544. https://doi.org/10.1016/j.ecolind.2009.06.007
  13. Jung, Y. S., 2010, A Study on the location of house and geographical features of Hahoe Village, Journal of the Architectural Institute of Korea Planning & Design, 26(7), 135-144 (in Korean).
  14. Kim, J. H. and I. A. Moosa, 2005, Forecasting international tourist flows to Australia: a comparison between the direct and indirect methods, Tourism Management, 26, 69-78. https://doi.org/10.1016/j.tourman.2003.08.014
  15. Korea Tourism Organization: Andong Hahoe Village, http://www.visitkorea.or.kr/enu/SI/SI_EN_3_1_1_1.jsp?cid=264148.
  16. Koutroumanidis, T., K. Ioannou, and G. Arabatzis, 2009, Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model, Energy Policy, 37, 3627-3634. https://doi.org/10.1016/j.enpol.2009.04.024
  17. Lee, H. S. and Y. H. Son, 2010, A study on landscape changes in a riverside village due to floods and public works for flood control: Focused on the Nakdong River Hahoe Village in Korea, Journal of the Korean Planners Association, 45(3), 243-252 (in Korean).
  18. Lim, C. and M. McAleer, 2000, A seasonal analysis of Asian tourist arrivals to Australia, Applied Economics, 32, 499-509. https://doi.org/10.1080/000368400322660
  19. Son, E. H. and D. B. Park, 2009, A forecasting of farm stay tourists on rural tourism villages, Green Tourism Research, 16(4), 27-44 (in Korean).
  20. SPSS TrendsTM 13.0, 2004, SPSS Inc.
  21. Valenzuela, O., I. Rojas, F. Rojas, H. Pomares, L. J. Herrera, A. Guillen, L. Marquez, and M. Pasadas, 2008, Hybridization of intelligent techniques and ARIMA models for time series prediction, Fuzzy Sets and Systems, 159, 821-845. https://doi.org/10.1016/j.fss.2007.11.003
  22. Yim, E. S., 1990, A study on the demand forecasting model of American, Japanese and Taiwanese visitors to South Korea, Study on Tourism, 14, 141-156 (in Korean).