• Title/Summary/Keyword: Autopilot Control

Search Result 178, Processing Time 0.022 seconds

Development of Route following Algorithm for Application in Collision Avoidance Routes of Maritime Autonomous Surface Ship (자율운항선박의 회피 항로 적용을 위한 항로 추종 알고리즘 개발)

  • Seung-Tae Cha;Yu-jun Jeong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.386-393
    • /
    • 2023
  • Recently, the demand for autonomous navigation technology has increased, and related research is also increasing. Autonomous ships generally follow the planned route, calculate the avoidance route according to the risk situation while sailing, and follow a calculated route. In general, an automatic steering device is used to follow the route, and among the operational automatic steering device methods, the route control mode is the most appropriate method to apply to autonomous ships. Therefore, in this study, we developed a route-tracking algorithm to apply an avoidance route using the navigation control mode of an automatic steering device. The algorithm was developed by dividing the straight and turning sections. A performance test was conducted to satisfy the performance suggested by IEC 62065, the relevant international standard, using simulator equipment that had acquired international certification to verify its performance. The results of the performance verification confirmed that the cross-track error, which represents the straight distance between the ship and the route, satisfied the performance standards suggested by IEC 62065 when the ship followed the route.

Robust Design of the Vibratory Gyroscope with Unbalanced Inner Torsion Gimbal Using Axiomatic Design (공리적 설계를 이용한 비대칭 내부 짐벌을 가진 진동형 자이로스코프의 강건설계)

  • Park, Gyeong-Jin;Hwang, Gwang-Hyeon;Lee, Gwon-Hui;Lee, Byeong-Ryeol;Jo, Yong-Cheol;Lee, Seok-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.914-923
    • /
    • 2002
  • Recently, there has been considerable interest in micro gyroscopes made of silicon chips. It can be applied to many micro-electro-mechanical systems (MEMS): devices for stabilization, general rate control, directional pointing, autopilot systems, and missile control. This paper shows how the mechanical design of the gyroscope can be done using axiomatic design, followed by the application of the Taguchi robust design method to determine the dimensions of the parts so as to accommodate the dimensional variations introduced during manufacturing. Functional requirements are defined twofold. One is that the natural frequencies should have fixed values, and the other is that the system should be robust to large tolerances. According to the Independence Axiom, design parameters are classified into a few groups. Then, the detailed design process is performed fellowing the sequence indicated by the design matrix. The dimensions of the structure are determined to have constant values fur the difference of frequencies without consideration of the tolerances. It is noted that the Taguchi concept is utilized as a unit process of the entire axiomatic approach.

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

A Point Navigation Guidance Law for Unmanned Helicopter Using Predicted Position (위치 예측에 기반한 무인헬기 점항법 유도법칙 개발)

  • Kim, Seong-Pil;Lee, Jang-Ho;Kim, Bong-Ju;Gwon, Hyeong-Jun;Kim, Eung-Tae;An, Lee-Gi
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents a new point navigation guidance law which is useful for unmanned helicopters. Predicting the future position, the guidance law generates velocity and heading commands, which are used as input to autopilot. This method differs from conventional guidance law in that it reorients the direction of flight velocity vector directly, not by bank angle indirectly. For flight tests, we have developed a flight control system for a R/C helicopters. The system consists of a flight control computer, navigation sensors, and a ground station The results of the test show that the proposed law guides a unmanned helicopter along a line path within a given area. In the future, we are planning to extend the guidance law to the mission of path following. i.e., waypoint navigation.

  • PDF

Design of Auto Race-Track and Figure-8 Flight Mode for UAV (무인기의 자동 장주비행 및 8자 비행모드 설계)

  • Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.851-857
    • /
    • 2014
  • This paper addresses the design of the auto race-track and figure-8 flight mode which can be applied to expand the loitering flight mode and increase the safety of UAV. To implement these flight modes, necessary waypoints and entry points can be calculated automatically from several information of the ground control system. The flight logic is proposed to pass the desired waypoints as well as entry points and transfer to the desired flight path by combining the light-of-sight and loitering guidance controller. The proposed algorithm and logic is verified using the 6-DOF UAV model and nonlinear simulation under the several flight conditions.

PC controlled Autonomous Navigation System for GPS Guided Field Robot (GPS를 이용한 필드로봇의 PC기반 자율항법 제어 시스템)

  • Han, Jae-Won;Park, Jae-Ho;Hong, Sung-Kyung;Ryuh, Young-Sun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Navigation system is applied in variety of fields including the simple location positioning, autopilot navigation of unmanned robot tractor, autonomous guidance systems for agricultural vehicles, construction of large field works that require high precision and map making process. Particularly utilization of GPS (Global Positioning System) is very common in the present navigation system. This study introduces a navigation system for autonomous field robot that travels to the pre-input path using GPS information. Performance of the GPS- based navigation is highly depended on its receiving rate because GPS receivers do not acquire any navigation information in the period between the refresh intervals. So this study presents an algorithm that improves an accuracy of the navigation by estimation the positional information during the blind period of a low rate GPS receiver. In fact the algorithm calculated the robot's heading in a 50 Hz rate, so the blind period of an 1 Hz GPS receiver is extensively covered. Consequently implementation of the algorithm to the GPS based navigation showed an improvement in guidance accuracy. The conventional field robot directly carried an expensive control computer and sensors onboard, therefore the miniaturization and weight reduction of the robot was limited. In this paper, the field robot carried only communication equipments such as GPS module, normal RC receiver, and bluetooth modem. This enabled the field robot to be built in an economic cost and miniature size.

Study on the Improvement of Gill Nets and Trap Nets Fishing for the Resource Management at the Coastal Area of Yellow Sea - On the Entrapping Behavior of Fishes into Trap Nets in the Water Tank Experiment - (서해구 자원관리형 자망ㆍ통발 어구어법 기술개발에 관한 연구 - 수조에서의 통발에 대한 어군의 입롱행동 -)

  • 장호영;조봉곤;고광수;한민숙
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • To investigate the entrapping behavior of blue crab, rock shell and green ling, which are mainly caught with the other trap nets in the coastal area of Yellow Sea, by the using duration of trap nets through the water tank experiment. We select the three kinds of trap nets which have different using duration such as new, 6 months and 12 months used one, and observe the entrapping ratio into the trap nets, respectively. In the mean while, in order to obtain the basic data for the estimate of mesh selectivity of the other trap nets, the entrapping behavior into the trap nets for green ling which has high activity compared to blue crab and rock shell, are examined to the three kinds of mesh size (35mm, 50mm and 65mm). The results are as follows ; 1. The mean entrapping ratio of blue crab by the using duration of trap nets in high with 4.4 fishes (44.0%) in the 6 months used one, become lower with 2.9 fishes (28.0%) in the new one, and with 2.0 fishes (20.0%) in the 12 months used one. 2. The mean entrapping ratio of rock shell by the using duration of trap nets in high with 7.3 fishes (36.7%) in the new one, and become lower with 7.2 fishes (35.8%) in the 6 months used one, and with 5.7 fishes (28.3%) in the 12 months used one. 3. The mean entrapping ratio of green ling by the using duration of trap nets in high with 3.4 fishes (34.0%) in the 6 months used one, and become lower with 3.0 fishes (30.0%) in the new one, and with 2.8 fishes (28.0%) in the 12 months used one. 4. The mean residual ratio of green ling by the mesh size of trap nets is high with 2.4 fishes (24.0%) in the 35mm mesh size, and become lower with 2.2 fishes (22.0%) in the 50mm mesh size and 2.0 fishes (20.0%) in the 65mm mesh size.