• Title/Summary/Keyword: Autopilot Control

Search Result 177, Processing Time 0.035 seconds

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Autopilot design using robust nonlinear dynamic inversion method (견실한 비선형 dynamic inversion 방법을 이용한 오토파일롯 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1492-1495
    • /
    • 1996
  • In this paper, an approach to autopilot design based on the robust nonlinear dynamic inversion method is proposed. Both unknown parameters and uncertainty bounds are estimated and parameter estimates are used in the fast inversion. Furthermore, to get more robustness slow inversion is incorporated with MRAC(Model Reference Adaptive Control) and sliding mode control where the estimates of uncertainty bounds are used. The proposed method is applied to the pitch autopilot design of a missile system and excellent performance is shown via computer simulation.

  • PDF

Study on a New and Effective Fuzzy PID Ship Autopilot

  • Le, Minh-Duc;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1628-1631
    • /
    • 2005
  • Ship Autopilots are usually designed based on the PD and Pill controllers because of simplicity, reliability and easy to construct. However their performance in various environmental conditions is not as good as desired. This disadvantage can be overcome by adjusting works or constructing adaptive controllers. But those methods are complex and not easy to do. This paper presents a new method for constructing a Ship Autopilot based on the combination of Fuzzy Logic Control (FLC) and Linear Control Theory (Pill control). The new Ship Autopilot has the advantages of both the Pill and FLC control methodologies: easy to construct, and optimal control laws can be established based on ship masters' knowledge. Therefore, the new ship autopilot can be well adapted with parameter variations and strong environment effects. Simulation using MATLAB software for a ship with real parameters shows high effectiveness of the Fuzzy Pill autopilot in course keeping and course changing manoeuvres in comparison with the ordinary Pill ship autopilots.

  • PDF

Adaptive and Digital Autopilot Design for Nonlinear Ship-to-Ship Missiles (비선형 함대함 미사일의 적응 디지털 제어기 설계)

  • Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.619-621
    • /
    • 2005
  • This paper proposes apractical design method for ship-to-ship missiles' autopilot. When the pre-designed analogue autopilot is implemented in digital way, theygenerally suffer from severe performance degradation and instability problem even for a sufficiently small sampling time. Also, aerodynamic uncertainties can affect the overall stability and this happens more severely when the nonlinear autopilot is digitally implemented. In order to realize a practical autopilot, two main issues, digital implementation problem and compensation for the aerodynamic uncertainties, are considered in this paper. MIMO (multi-input multi-output) nonlinear autopilot is presented first and the input and output of the missile are discretized for implementation. In this step, the discretization effect is compensated by designing an additional control input. Finally, we design a parameter adaptation law to compensate the control performance. Stability analysis and 6-DOF (degree-of-freedom) simulations are presented to verify the proposed adaptive autopilot.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANNAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection c! the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANNAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.29 no.9
    • /
    • pp.771-776
    • /
    • 2005
  • This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANNAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection of the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANNAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances will be presented.

Modal synthesis of missle autopilot control law (미사일 자동 조종 제어 법칙의 형태합성)

  • 박노웅;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.547-549
    • /
    • 1987
  • The purpose of this paper is to present an efficient and practical method for a Hissle autopilot design problem. The method emphasizes on the use of a modern design technique to classical flight control specifications and the trade-off between dynamic performance and robustness of the Missle autopilot control system.

  • PDF

Autopilot gain adjustment for flight control system with limiter (제한기가 있는 비행제어시스템의 자동조종 알고리듬 이득 조정)

  • 최동균;유재종;김종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1864-1866
    • /
    • 1997
  • Uncertainties in the aerodynamic coefficients or time delay effects in implementing an autopilot algorithm can make a Flight Control System(FCS) unstable. When a FCS enters unstable state, the actuator or sensor limiters in FCS make the unstable system not diverge but be in the state of stable limit cycle. If an autopilot recognize the FCS to be in the stable limit cycle phenomenon, it woudl be better to adjust autopilot gains to stabilize the FCS. A novel method to stabilize a FCS using parameter estimation and maintenance of given phase margin is proposed. The method is applied to roll control loop and verified its performance.

  • PDF

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

HILS Test for the Small Aircraft Autopilot (소형항공기용 Autopilot HILS 시험)

  • Lee, Jang-Ho;Kim, Eung-Tai;Seong, Ki-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Recently, autopilot is essential to reduce pilot's workload and increase flight safety. Avionics system of the small aircraft also has progressively adopted centralized multi-processor and multi-process computing architectures similar to the integrated modular avionics of B-777. It is increased more and more that importance of the flight control system. In this paper, the performance of the autopilot for the small aircraft has been verified with Hardware-In-the-Loop Simulation(HILS). Also, the autopilot algorithm that is operated in the Flight Control Computer(FCC) for the Fly by Wire(FBW) was verified with PILS and compared with the HILS results for the several commercial autopilots.

  • PDF