An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part I: Theoretical study)

Phung-Hung NGUYEN* and Yun-Chul JUNG**

* Graduate school, Korea Maritime University, Pusan 606-791, Korea
** Professor, Div. of Navigation Systems Engineering, Korea Maritime University, Pusan 606-791, Korea

Abstract: This paper presents a new adaptive autopilot for ships based on the Adaptive Neural Networks. The proposed adaptive autopilot is designed with some modifications and improvements from the previous studies on Adaptive Neural Networks by Adaptive Interaction (ANAI) theory to perform course-keeping, turning and track-keeping control. A strategy for automatic selection of the neural network controller parameters is introduced to improve the adaptation ability and the robustness of new ANAI autopilot. In Part II of the paper, to show the effectiveness and feasibility of the proposed ANAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented.

Key words: Adaptive Neural Networks, Adaptive Interaction, Autopilot, Course-keeping and Turning Control, Track-keeping Control.

1. Introduction

Since late 1980s, research interests in automatic control have turned to developing the "intelligent control systems". Intelligent control can be classified into the following areas: expert or knowledge based systems, fuzzy logic controllers and neural networks (hereinafter, called NN) based controllers. The potential of NN for control has received much attention and rapidly grown in the 1990s. This is because the ability of NN in solving some awkward control problems where the high non-linearity of the controlled plant and unpredictable external disturbances make the plant’s behaviors hard to control. In addition, the fast calculation in NN is also suitable for real time control applications. The theory and applications of NN in control can be found in Haykin (1999), Lewis et al.(1999), Narendra (1990), Pham et al.(1995), etc.

The application of NN control theory in marine control is relatively new. A study in feasibility of using NN to control surface ships was discussed by Burns et al.(1996). Djouani et al.(1996) proposed a feedback optimal neural network controller (hereinafter, called NNC) for dynamic systems and applied to ship maneuvering. Those NNC require off-line training phase for the synaptic weights. Later, Hardier (1997) introduced recurrent NN for ship modeling and control and compared with classical methods. To achieve an adaptive NNC for ship, Zhang et al.(1997a,b) used multi-layer NNC with single hidden layer and on-line training strategy of network weights as adaptive NNC for ship control including course-keeping, track-keeping and auto-berthing control. Also in this study, backpropagation (hereinafter, called BP) algorithm was used for weights updating.

In this paper, we propose a direct adaptive NNC for course-keeping and track-keeping control of ship based on the adaptation algorithm developed by Brandt et al.(1999) and the extension of NNC proposed in Saikalis et al.(2001) with some modifications and improvements. The proposed NNC can be trained on-line so that, in this control scheme, off-line training phases are removed. Additionally, both the learning rate and the number of iterations for weight updating can be dynamically selected (Hearn et al., 1997, Lewis et al., 1999). With this adaptation method, the sufficient (but not excessive) training for on-line training requirement is achieved, no pre-test of the NN is required and the training time is minimized without adversely affecting the ability of the network to learn the plant’s behavior. This new feature has not been found in the previous works.

The remaining part of this paper is arranged as the following: section 2 reviews the ANAI and describes the general form of the proposed NNC; section 3 presents the design of the ANAI autopilot for course-keeping and turning control; the application of the ANAI autopilot in track-keeping control is described in section 4; and section 5 outlines the conclusions.

* hungdtkb@hotmail.com, 051410-4285
** ycjung@hhu.ac.kr, 051410-4286
2. Review of the Adaptive Neural Networks by Adaptive Interaction

2.1. Adaptive Neural Networks by Adaptive Interaction

Brandt et al. (1999) proposed a new approach for the adaptability of NN. The adaptation algorithm developed in their study using adaptive interaction theory was applied to NN. Using the standard notations in NN and denote (for $i, j \in \mathbb{N}$)

- O_i: the output of neuron i;
- w_{ij}: the weight of the connection from neuron j to neuron i; $w_{ij} = 0$ if j is not connected to i;
- θ_i: the threshold value of neuron i;
- $g(x)$: the activation function of a neuron;
- O_i^c: the desired output of neuron i (for output neurons);
- γ: the learning rate.

The NN can be described by

\[O_i = g(\text{sat}(t_i)) = g\left(\sum_{j \in \mathbb{N}} w_{ij} O_j + \theta_i\right) \]

The goal is to minimize the following error

\[E = \frac{1}{2} \sum_{i \in \mathbb{N}} e_i^2 \]

where $e_i = O_i^c - O_i$, if i is output neuron.

And the adaptation algorithm for NN in Brandt et al. (1999) can be described as the following

\[w_{ij} = g'(\text{sat}(t_i)) \frac{O_j}{O_i} \sum_{k \in \mathbb{N}} w_{ki} e_i - \gamma g'(\text{sat}(t_i)) O_i e_i \]

Equation (4) describes Brandt-Lin algorithm for adaptation of weights in NN. Later, a NNC based on the Brandt-Lin algorithm was proposed in Saikalis et al. (2001). Their simulations showed the effectiveness of the NNC and some notes and conclusions were figured out.

2.2. General form of the on-line trained ANNAI

The configuration of the ANNAI controller proposed in this study is shown in Fig. 1. Using the cost function described in Zhang et al. (1997a) we have

\[E_k = \frac{1}{2} (X_k^d - X_k) P (X_k^d - X_k)^T + \frac{1}{2} u_k A u_k^T \]

where X_k^d and X_k are desired state vector and actual state vector respectively; u_k^c is the command control vector and u_k is the actual control vector; P is a constant diagonal matrix reflecting the weightings of the plant variables to be controlled; A is another constant diagonal matrix for the control vector.

Fig. 1 Direct Adaptive Neural Controller by AI

(Removing feedback network)

Similarly to Zhang et al. (1997a), the training process of the network is carried out within each control cycle indicated by k with n is the number of the training iterations. The adaptation algorithm (4) is used to adjust the synaptic weights in the NN so that, cost function E_k can be minimized. The inputs to the NNC consist of error $e_k = X_k^d - X_k$ and its time delayed values. The task of the NNC is to infer appropriate control actions in the next time step after "learning" the behavior of the plant's desired and actual states through e_k. To improve adaptation speed and ability of the NNC, we propose a method to adjust the network learning rate γ and number of iterations n automatically.

3. ANNAI Autopilot for course-keeping and turning control

3.1. ANNAI Autopilot Design

In this section, a direct adaptive ANNAI autopilot for course-keeping and turning control is proposed. The NNC is a multilayer feedforward NN with one hidden layer. The NNC consists of four input neurons, six hidden neuron and one output neuron. The configuration of the NNC is shown in Fig. 2 and Fig. 3 where w_{ij} is used to indicate the weights between output layer and hidden layer, w_{ik} is used to indicate the weights between hidden layer and input layer. The subscripts p, i and j indicate the number of neurons in input, output and hidden layer respectively. The
input signals of the NNC are merely heading error and its
time-delayed values. The task of the ANNAI autopilot is to
find appropriate rudder to minimize the following cost
function:
\[E_k = \frac{1}{2}(\psi_k^d - \psi_k)^2 \]

(6)

![Fig. 2 ANNAI autopilot for course-keeping control](image)

In which, \(\psi_k^d \) and \(\psi_k \) are desired heading and actual
heading respectively. Thus we have:
\[\frac{\partial E_k}{\partial \psi_k} = -(\psi_k^d - \psi_k) = -e_k \]

(7)

\[e_k \]

![Fig. 3 NN configuration](image)

The output of neurons in the output layer with
sigmoidal activation function:
\[O_i = \delta_k = \sigma(\neq t_i) = \frac{1}{1 + \exp(-\neq t_i)} \]

(8)

The output of neurons in the output layer with tangent
sigmoidal activation function:
\[O_i = \delta_k = \tanh(\neq t_i) = \frac{2}{1 + \exp(-2 \neq t_i)} - 1 \]

(9)

The output of neurons in the output layer with linear
activation function:
\[O_i = \delta_k = f(\neq t_i) = K(\neq t_i) \]

(10)

where,
\[\neq t_i = \sum_j (w_{ij}O_j) + \theta_i \]

and \(K \) is a linear gain of the output neurons with linear
activation function.

Here \(O_{i-1} = \delta_k \) is output of NNC or rudder
command, \(\neq t_i \) is the summation of the weighted inputs to
the units in the output layer plus \(\theta_i \), where \(\theta_i \) is the
threshold value of the output layer neurons. The neurons in
hidden layer have sigmoidal activation function. The output
of neurons in the hidden layer is:
\[O_j = \sigma(\neq t_j) = \frac{1}{1 + \exp(-\neq t_j)} \]

(12)

where,
\[\neq t_j = \sum_p (w_{jp}O_p) + \theta_j \]

(13)

Now, applying the adaptation algorithm (4) for the
hidden weights of the NNC, we have:
\[w_{jp}' = O_p[\phi_j\sigma(\neq t_j) + \gamma_0] = O_p \phi_j \sigma(\neq t_j) \]

(14)

where,
\[\phi_j = w_{ij} \]

(15)

As stated in Saikalis et al.(2001), 'the adaptation law
for \(w_{ij} \) is more complicated and it is linked to the plant to
be controlled'. Here \(O_p \) is the set of \(p \) inputs to the NNC
consisting of current heading error \(e_k \) and its delayed
signals at time steps \(k-1, k-2, \ldots, k-p-1 \) \((O_p = e_p) \).

Applying the adaptation algorithm (4) we can get the
adaptation law for \(w_{ij} \) by (16), (17) or (18) if the activation
function of the output neurons are (8), (9) or (10)
respectively:
\[w_{ij} = \gamma(\sigma(\neq t_i)') \sigma(\neq t_j) e_k \]

(16)

\[w_{ij} = \gamma(\tanh(\neq t_i)') \sigma(\neq t_j) e_k \]

(17)

\[w_{ij} = \gamma(K. \neq t_j) \sigma(\neq t_j) e_k \]

(18)

According to Saikalis et al.(2001), instead of (16), (17)
and (18), the adaptation law for \(w_{ij} \) can be approximated by
\[w_{ij} = \gamma \sigma(\neq t_j) \cdot e_k = \gamma O_j e_k \]

(19)

Based on the work of Zhang et al.(1997a), we can modify
the cost function in (6) in the form of
\[E_k = \frac{1}{2} \left[\rho(\psi_k^d - \psi_k)^2 + \lambda \delta_k^2 + \sigma e_k^2 \right] \]

(20)

in which, \(r_k \) is the yaw rate at time step \(k, \sigma \) is a
constant. Using the chain rule we can modify equation (7)
as the following:
\[
\frac{\partial E_k}{\partial \psi_k} = \frac{\partial E_k}{\partial \sigma_k} \frac{\partial \sigma_k}{\partial \delta_k} + \frac{\partial E_k}{\partial \delta_k} \frac{\partial \delta_k}{\partial \psi_k}
\]

(21)

Also similarly in Zhang et al. (1997a), replacing \(\partial \sigma_k/\partial \delta_k \) by \(\text{sign}(\partial \sigma_k/\partial \delta_k) = -1 \) yields

\[
\frac{\partial E_k}{\partial \psi_k} = \frac{\partial E_k}{\partial \sigma_k} \frac{\partial \sigma_k}{\partial \delta_k} + \frac{\partial E_k}{\partial \delta_k} \frac{\partial \delta_k}{\partial \psi_k} = - (\rho e_k + \lambda \delta_k + \sigma \tau_k)
\]

(22)

Now (7) is replaced by (22), and equation (19) can be rewritten as

\[
\dot{w}_{ij} = \gamma \sigma (\neq t_j) (\rho e_k + \lambda \delta_k + \sigma \tau_k)
\]

(23)

To summarize, the ANNAD autopilot has the adaptation law for the hidden layer weights and output layer weights as described in equations (14) and (23) respectively.

3.2. Automatic Selection of Learning Rate and Number of Iterations

During the training process, if the learning rate \(\gamma \) is too large, then the NN can overshoot the minimum cost values, jumping back and forth over the minimum and failing to converge (Lewis et al., 1996). However, if the learning rate is too small, the adaptation may not converge or be very slow to converge. Zhang et al. (1997a,b) applied "intensive training" scheme to the backpropagation NN which needs some pre-tests to achieve the sufficient (but not excessive) network training and the on-line control requirement. Similarly, in Nguyen (2005), various simulations were carried out to verify the NNC so that the learning rate and number of training iterations \(n \) were carefully selected. Thus, adapting the learning rate can significantly speed up the convergence of the weights and remove the manually selecting of this parameter.

In Hearn et al. (1997), a new strategy called "moderate training" was proposed. The number of training iterations specified for each sampling interval was not fixed but dynamically selected as a function of the cost function. In the new interval, the previously selected weights were not discarded but used as starting values for the new updating process.

In this study, we propose a new strategy for the automatic selection of both \(n \) and \(\gamma \) simultaneously. Here the learning rate is increased if the cost \(E_k \) is decreasing. If the cost increases during the process, the learning rate is reduced until the cost decreases. Simultaneously, the number of training iterations is selected such that it cooperates with the selected learning rate to achieve the sufficient (but not excessive) network training and the on-line control requirement.

4. ANNAI Autopilot for track-keeping control

In this section, the ANNAI autopilot proposed in section 3 is combined with a Light-of-Sight (LOS) guidance system to perform track-keeping control task. The desired path consists of waypoints and the straight lines connecting the waypoints from departure to destination ones. LOS guidance have been applied to surface ships by Vukic et al. (1997, 1998), McGookin et al. (2000) and Fossen et al. (2003). The LOS algorithm for calculating the guidance heading is presented in Fossen (2002) as following:

For surface ships, LOS guidance vector is shown in Fig. 4. It is defined as the vector from the vessel coordinate origin \((x, y)\) to the intersecting point on the path \((x_{los}, y_{los})\) a distance \(n\) ship lengths \(L_{pp}\) ahead of the vessel. The desired yaw angle can be computed as

\[
\psi_d(t) = \text{atan2}(y_{los} - y(t), x_{los} - x(t))
\]

(24)

where the LOS coordinates \((x_{los}, y_{los})\) are given by

\[
\begin{align*}
(y_{los} - y(t))^2 + (x_{los} - x(t))^2 &= (nL_{pp})^2 \\
\frac{y_{los} - y_{k-1}}{x_{los} - x_{k-1}} &= \frac{y_{los} - y_{k-1}}{x_{los} - x_{k-1}} = \text{constant}
\end{align*}
\]

(25)

(26)

When vessel moves along the predefined path, a switching mechanism for selecting the next waypoint is needed. Waypoint \((x_{k+1}, y_{k+1})\) can be selected on a basis of whether the vessel lies within a circle of acceptance with
radius R_0 around waypoint (x_k, y_k). If $(x(t), y(t))$ is the vessel position and the following inequality holds
\[
\left[x_k - x(t)\right]^2 + \left[y_k - y(t)\right]^2 \leq R_0^2
\] (27)
then the next waypoint (x_{k+1}, y_{k+1}) should be selected; it means that k should be incremented to $k = k+1$. R_0 must not be larger than nL_{sp} and is selected as distance from waypoint (x_k, y_k) to wheel over point (WOP) plus about one ship length before the WOP, where WOP indicates the point at which the ship leaves the straight line and enters the circle arc and vice versa (Husa et al., 1997). The position of the WOP, and so R_0 depends on the ship’s course change (angle between current segment and new segment of the path). This dependence was shown in Vukic et al. (1997) and is included in the simulation programs presented in Part II for automatic calculation of R_0.

The configuration of the ANNAI track-keeping controller is shown in Fig. 5. The LOS guidance system produces guidance heading signals for ship to follow and make the ship position converge to the predefined path.

- Update the synaptic weights within each control cycle;
- Adapt the number of training iterations and learning rate.

In Part II of the paper, the effectiveness and robustness of the proposed ANNAI autopilot have been validated through computer simulations. For comparison with the proposed NNC, the simulations of previous studies on backpropagation-based NNC is also presented for the same control tasks and under the same assumptions.

References

Z. Vukic and G. N. Roberts).

