• Title/Summary/Keyword: Autonomous marine vehicles

Search Result 27, Processing Time 0.031 seconds

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines

  • Lee, Sang-Min;Kwon, Kyung-Yub;Joongseon Joh
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-181
    • /
    • 2004
  • An autonomous navigation algorithm for marine vehicles is proposed in this paper using fuzzy logic under COLREG guidelines. The VFF (Virtual Force Field) method, which is widely used in the field of mobile robotics, is modified for application to the autonomous navigation of marine vehicles. This Modified Virtual Force Field (MVFF) method can be used in either track-keeping or collision avoidance modes. Moreover, the operator can select a track-keeping pattern mode in the proposed algorithm. The collision avoidance algorithm has the ability to handle static and/or moving obstacles. The fuzzy expert rules are designed deliberately under COLREG guidelines. An extensive simulation study is used to verify the proposed method.

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Flow Interaction of Sailing Drone using Numerical Method

  • Ngoc, Pham Minh;Choi, Min-Seon;Yang, Changjo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.230-232
    • /
    • 2019
  • There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and collecting oceanographic data. This paper is performed to develops an autonomous sailing drone to be used as a sensor carrying platform for autonomous data acquisition at Sea. From a sailing drone design viewpoint, it is important to establish reliable prediction methods for sailing drone's resistance. The required power for the propulsion unit depends on the ship resistance and speed. There are three solutions for the prediction of ship resistance as follow analytical methods, model tests in tanks and Computational Fluid Dynamics (CFD). The present paper aims at simulating sailing drone friction resistance using numerical method. The dynamic mesh motion is used to describe the sailing drone movement.

  • PDF

Challenges and Real-world Validation of Autonomous Surface Vehicle Decision-making System

  • Mingi Jeong;Arihant Chadda;Alberto Quattrini Li
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.357-359
    • /
    • 2022
  • Autonomous decision-making is key to safe and efficient marine autonomy, as global marine industry comprises over 90 percent of the world's cargo transportation. Challenges of the real-world validation in the aquatic domain limits the wide-spread of ASVs despite their promising societal impacts. We propose and demonstrate the real-world validation platform and comprehensive algorithm steps. Such a framework will serve as a more explainable and reliable decision-making system of ASVs as well as autonomous vehicles in other domains.

  • PDF

Optimal Route Planning for Maritime Autonomous Surface Ships Using a Nonlinear Model Predictive Control

  • Daejeong Kim;Zhang Ming;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • With the increase of interest in developing Maritime Autonomous Surface Ships (MASS), an optimal ship route planning is gradually gaining popularity as one of the important subsystems for autonomy of modern marine vessels. In the present paper, an optimal ship route planning model for MASS is proposed using a nonlinear MPC approach together with a nonlinear MMG model. Results drawn from this study demonstrated that the optimization problem for the ship route was successfully solved with satisfaction of the nonlinear dynamics of the ship and all constraints for the state and manipulated variables using the nonlinear MPC approach. Given that a route generation system capable of accounting for nonlinear dynamics of the ship and equality/inequality constraints is essential for achieving fully autonomous navigation at sea, it is expected that this paper will contribute to the field of autonomous vehicles by demonstrating the performance of the proposed optimal ship route planning model.

Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어)

  • Park, Rang-Eun;Hwang, Eun-Ju;Lee, Hee-Jin;Park, Mignon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

The design method research of the control system for Autonomous Underwater Vehicle (AUV) using Linear Matrix Inequality (LMI)

  • Nasuno, Youhei;Shimizu, Etsuro;Aoki, Taro;Yomamoto, Ikuo;Hyakudome, Tadahiro;Tsukioka, Satoshi;Yoshida, Hiroshi;Ishibashi, Shojiro;Ito, Masanori;Sasamoto, Ryoko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1060-1065
    • /
    • 2005
  • An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is developing light-and-small Autonomous Underwater Vehicles (AUV)$^{1)}$, named 'MR-X1' (Marine Robot Experimental 1), which can cruise, investigate and observe by itself without human's help. In this paper, we consider the motion control problem of 'MR-X1' and derive a controller. Since the dynamic property of 'MR-X1' is changed by the influence of the speed, the mathematical model of 'MR-X1' becomes the nonlinear model. In order to design a controller for 'MR-X1', we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates t e optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper proposes a controller design method using Linear Matrix Inequalities (LMIs)$^{2),3),4)}$, which can adapt the speed variation of 'MR-X1'. And examples of numerical analysis using our designed controller are shown.

  • PDF

Faster-than-real-time Hybrid Automotive Underwater Glider Simulation for Ocean Mapping

  • Choi, Woen-Sug;Bingham, Brian;Camilli, Richard
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2022
  • The introduction of autonomous underwater gliders (AUGs) specifically addresses the reduction of operational costs that were previously prohibited with conventional autonomous underwater vehicles (AUVs) using a "scaling-down" design philosophy by utilizing the characteristics of autonomous drifters to far extend operation duration and coverage. Long-duration, wide-area missions raise the cost and complexity of in-water testing for novel approaches to autonomous mission planning. As a result, a simulator that supports the rapid design, development, and testing of autonomy solutions across a wide range using software-in-the-loop simulation at faster-than-real-time speeds becomes critical. This paper describes a faster-than-real-time AUG simulator that can support high-resolution bathymetry for a wide variety of ocean environments, including ocean currents, various sensors, and vehicle dynamics. On top of the de facto standard ROS-Gazebo framework and open-sourced underwater vehicle simulation packages, features specific to AUGs for ocean mapping are developed. For vehicle dynamics, the next-generation hybrid autonomous underwater gliders (Hybrid-AUGs) operate with both the buoyancy engine and the thrusters to improve navigation for bathymetry mappings, e.g., line trajectory, are is implemented since because it can also describe conventional AUGs without the thrusters. The simulation results are validated with experiments while operating at 120 times faster than the real-time.

Development of a Semi-Autonomous Underwater Vehicle (반 자율 무인 잠수정의 개발)

  • Kim, Kyeong-Ki;You, Sam-Sang;Seo, Ju-No;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.784-790
    • /
    • 2007
  • This paper is mainly concerned with the development of the semi-autonomous underwater vehicle (SAUV). Underwater vehicles are affected by external disturbances due to the sea conditions such as currents and waves when it is performing various missions In this paper we present a design scheme of the SAUV system with mathematical models. Also. we present a control system including motion control of motors and main controller and a communication based on CAN method for interrelated control between the controllers and actuators.