• Title/Summary/Keyword: Automotive Industry

Search Result 1,023, Processing Time 0.03 seconds

A Study on the Characteristics of Idle Vibration due to the Type of Constant Velocity Joints (등속조인트 방식에 따른 공회전 진동특성 연구)

  • Sa, Jong-Sung;Shin, Yang-Hyun;Kang, Tae-Won;Kim, Chan-Mook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 2008
  • This paper deals with the characteristics of idle vibration due to the type of constant velocity joints. Based on the kinematics model of constant velocity joints, a offset between the tripod center and tullip center plays a important role in generating unwelcome forces. Moreover, it induced additional forces in lateral direction of a vehicle movement according to the angle of the spider in idle vibration. The difference of mass for each constant velocity joint types affect the natural frequency of the driveshaft and the powertrain. When the static torque is applied to the constant velocity joints, the natural frequencies of the driveshaft are reduced nearby 50Hz. There will be a big opportunity that the dirveshaft and constant velocity joints would be a transfer path of idle vibration at D or R gear range. Experiments indicate that TJ type is better than SFJ and DOJ in idle vibration.

Measurement of the Wear Amount of WC-coated Excavator Spacer using the PTA Process to Improve Wear Resistance by Using Reflective Digital Holography (반사형 디지털 홀로그래피를 이용한 내마모성 향상을 위한 공법이 적용된 PTA 굴착기의 초경 코팅 스페이서의 마모량 측정)

  • Shin, Ju-Yeop;Lim, Hyeong-Jong;Lee, Hang-Seo;Kim, Han-Sub;Jung, Hyun-Chul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spacer, which is located between the bucket and the arm of an excavator, has a role in preventing damage to the excavator arm during excavation work. When the durability of the spacer is increased, the lifetime of the arm can be extended and the processing costs can be reduced. To increase the durability of the spacer, tungsten carbide (WC) coating was applied on the surface of a spacer using the plasma transferred arc (PTA) process. The confirm the durability, a wear test using a pin-on disk type of wear testing machine was done under the given conditions and the wear amount on the surface of a tested specimen was measured using reflective digital holography. The results were compared with that of ALPHA-STEP.

PROCESS ANALYSIS OF AUTOMOTIVE PARTS USING GRAPHICAL MODELLING

  • IRIKURA Norio;KUZUYA Kazuyoshi;NISHINA Ken
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.295-300
    • /
    • 1998
  • Recently graphical modelling is being studied as a useful process analysis tool for exploratory causal analysis. Graphical modelling is a presentation method that uses graphs to describe statistical models of the structures of multivariate data. This paper describes an application of this graphical modeling with two cases from the automotive parts industry. One case is the unbalance problem of the pulley, an automotive generator part. There is multivariate data of the product from each of the processes which are connected in the series. By means of exploratory causal analysis between the variables using graphical modeling, the key processes which causes the variation of the final characteristics and their mechanism of the causal relationship have become clear. Another case is, also, the unbalanced problem of automotive starter parts which consists of many parts and is manufactured by complex machinery and assembling process. By means of the similar technique, the key processes are obtained easily and the results are reasonable from technical knowledge.

  • PDF

Automotive Rim Manufacturing using Flow Forming (유동성형을 이용한 자동차 림 가공)

  • Oh, J.H.;Kim, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.379-381
    • /
    • 2009
  • In designing full vehicle, crash safety, fuel efficiency, exhaust gas, and driving stability are very important factors. Especially, automotive wheel which supports total vehicle weight is a critical component in view of driving stability. Most of automotive wheel have been manufactured for beautiful appearance by using aluminum alloy in domestic industry. However, the amount of automotive steel wheel used are on an increasing trend according to developing the advanced high strength steel with good formability property recently. In this study, the circumferential deviation of rim with various thickness and yield strength was investigated. The formability evaluation of the rim was developed by using a finite element module furnished by Forge software.

  • PDF

Study on the Armature Winding Design of Interior Permanent Magnet Synchronous Motor for Maximum Power (최대 출력 확보를 위한 매입형 영구자석 전동기의 전기자 권선설계)

  • Lim, Ho-Kyoung;Lee, Jeong-Jong;Lee, Tae-Guen;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.875_876
    • /
    • 2009
  • Recently, Interior Permanent Magnet Synchronous Motor(IPMSM) is widely used in the industry applications such as power train for hybrid vehicles and compressor motors of air-conditioner due to its high power density and wide speed range. There are some ways for confirming of maximum power in IPMSM. However, This paper suggests that there is a way about making sure maximum power by reducing turn numbers of armature winding. Setting up the voltage equation through the equivalent circuit and vector diagram of IPMSM first, and then estimating the parameter and power of IPMSM by changing the turn numbers of armature winding and voltage. In order to satisfy output power, the turn numbers of armature winding is changed by using the characteristic analysis, and then checking whether secure maximum power or not.

  • PDF

A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive (전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구)

  • Cho, Hong;Jeoung, Sun-Kyoung;Kim, Byeong-Woo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

Approximate Optimization Design Considering Automotive Wheel Stress (자동차용 휠의 응력을 고려한 근사 최적 설계)

  • Lee, Hyunseok;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

Laser welding technology platform for automotive industry (자동차용 강판의 레이저 용접 플랫폼기술)

  • Kim, Cheol-Hee;Kang, Min-Jung;Ahn, Young-Nam
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • Manufacturing technology platform for automotive and mobile industries has been constructed since 2009, for the platform technology project funded by ministry of knowledge and economics. Technology platform in laser welding has also been developed for automotive steel sheets with a strength up to 1GPa. Laser welding technology platform will provide welding characteristics for various laser sources, steel plates and welding conditions. This article shortly explains outline of laser welding technology platform and partially introduces the developed laser welding data base.

  • PDF

Robust Design Study of Engine Cylinder Head (엔진 실린더헤드 강건 설계 방안)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.133-139
    • /
    • 2011
  • Maintaining adequate sealing in engine cylinder head is a crucial factor in engine design. Failure of engine operations occurs mainly owing to the leaking by decreased sealing pressure. Reliability-robustness concept is applied to the engine cylinder head system. Deterministic way to obtain engineering solution in CAE industry may not consider the effects of noises and disturbances experienced during operation. However, analytical reliability-robustness concept may make possible to reduce the sensitivity of system with noise factors. Influences of design factors including noise factors would be predicted in analytical way. Optimized design may be obtained by shrinking variability and shifting to design target. Three-dimensional finite element analyses have been performed to apply analytical reliability-robustness concept.

Numerical Modeling to Evaluate Rear Crashworthiness for Round Recliner of Automotive Seats (자동차 시트용 라운드 리클라이너의 후방 충돌 성능 평가를 위한 수치해석 모델링)

  • Kim, Jung-Min;Lee, Kyoung-Taek;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • The development of more safe recliners is an important issue in the automotive industry. However, the development of new recliners is costly and take much time because it is typically based on experimental evaluation using prototypes. This study presents the evaluation of rear crashworthiness for round recliner using finite element method. That reduces the number of repeating test and gives an information about stiffness. To evaluate rear crashworthiness, the FMVSS 301 simulation and pendulum impact simulation were performed. The load path on two simulations was observed and compared each other in this paper. Also stress, strain and internal energy was compared. It is attempted the tooth strength simulation using a substructure option on PAM-CRASH.