• Title/Summary/Keyword: Automotive Fuel

Search Result 1,719, Processing Time 0.026 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

A Study on the Objects Arrangement of Display Panel and the Cognitive Accuracy under the Virtual Reality Evaluation Tool (가상현실 기법을 적용한 평가도구를 활용한 계기반 배치 및 인지 정확도에 관한 연구)

  • Kim, Sun-young;Yu, Seung-dong;Park, Peom
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Most of the important visual information is presented to driver through the display panel that is related to the vehicle. If display panel is designed with the c consideration of driver's visibility, drivers can get broad visual field and visual I information related to vehicle promptly and exactly during driving situation. Therefore display panel has direct relationship with the driver's task performance and it can be considered as an important device that affects the driver-automotive interaction. Many r researches about shape, characteristic and color of display panel have been performed, but not sufficient in this country Nowadays most of vehicles has an analog type display. but its shape and arrangement a are various without any definite standards about position. Therefore. experiments using evaluation tool (VISVEC System) were conducted to inquire the driver's preference on the major objects arrangement of display panel (speedometer. tachometer. fuel meter. and t thermometer) and to ascertain the factors that have an effect on drivers according to the objects position of the display panel The experiment results showed that there was no correlation between the arrangement c characteristics preferred by subjects and the cognitive accuracy but the cognition of V visual information more easy when the each major object has its area.

  • PDF

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Technical Trends of Rare Metal Recycling in the Next Generation Automobile (차세대 자동차용 희소금속 리싸이클링 기술동향)

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.3-16
    • /
    • 2014
  • Car exhaust $CO_2$ gas reduction and fuel efficiency of the car lighter for the current era is a big challenge. The developments of high-performance Nd magnets, Li-ion secondary battery and exhaust gas purification performance of PGM catalysts used in the lightweight EV and HEV are activated. Country in order to improve the car lighter and function that use the resources of rare metals are ubiquitous imported from China because of export supply control, as soaring prices have unstable supply and demand. Compared to the emissions from the next-generation automotive recycling, waste scarce resources need to be. This study investigated the recycling technology analysis and development of the information technology, or delivered to the researchers by giving national car industry aims to contribute to the development. Findings, pulmonary high-performance motor vehicle emissions in the exhaust gas purification PGM Catalysts, Li-ion battery and Nd magnets recycling technology, such as pre- and post-processing techniques to classify technology, pre-urban mining technology mechanical separation by screening techniques under development, the study and post-processing technology has, pyro and hydro metallurgical smelting technology is established. Waste Recycling in terms of economic efficiency of mechanical components for the intensive study of screening techniques is needed.

Study of FAME components and total contents on Micro-algal Biodiesel derived from Dunaliella tertiolecta (Dunaliella tertiolecta를 이용한 미세조류 유래 바이오디젤의 FAME 성분 특성 연구)

  • Lee, Don-Min;Min, Kuyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.320-328
    • /
    • 2014
  • Biodiesel has very similar physical properties (density, kinematic viscosity) and has even higher cetane number compare with conventional diesel. There are no necessity to change or modify the infra-structure & engine system. It is known that fatty acid methyl ester (FAME) is oxygen-contained components increasing the combustibility, biodegradability and reduced the exhaust harmful gas. These things made the biodiesel more popular as an alternative diesel fuel. But biodiesel's sources are controversial issues about $CO_2$ reduction effect at this time because those mainly come from edible plants such as soy, palm, rapeseed already spent lot of $CO_2$ to cultivate. Whereas micro-algae is focused because they are inedible and has rapid growth rates & high carbon-dioxide adsorption rate per area. In this study, we analyze the each FAME components using $GC{\times}GC$-TOFMS in stead of GC-FID and verify the previous total FAME contents method's applicability through the micro algal biodiesel derived from Dunaliella tertiolecta.

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

Optimum Design of Weight Reduction and Driving Performance enhancement for Formula type Self-design on-road vehicle (포뮬러 형태 자작자동차의 경량화 및 주행 성능 향상을 위한 최적설계에 관한 연구)

  • Shin, Sang-Won;Kang, Sin-Wook;Ha, Seung-Hyun;Park, Jin-Pyo;Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.725-732
    • /
    • 2017
  • Weight reduction is one of the important issues in the automotive industry and the development of internal combustion engines vehicles, future vehicles, and eco-friendly vehicles for improving fuel efficiency. The objective of this study is to investigate the improvement of driving performance by weight reduction and optimum design for a formula-type self-designed on-road vehicle. This study is divided into the four steps. Firstly, the engine room was replaced and designed with a lighter engine. Secondly, an optimization study was conducted to simplify and lighten the vehicle components with the design of the frame. Thirdly, the structure design was optimized and the suspension was analyzed with the design of the frame. Finally, the design of an upright and hub with reduced weight was carried out using lighter parts. As a result, we reduced the weight of the vehicle by 48.5kg compared to the previous year (19.5%) and increased the acceleration from 6.8 s to 5.8 s.s.