• 제목/요약/키워드: Automotive Door

검색결과 130건 처리시간 0.021초

트리밍과 플랜징을 포함한 Front Door Panel 의 성형해석 (Analysis of Forming a Front Door Panel Including Trimming and Flanging)

  • 김충식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.53.1-56
    • /
    • 1999
  • Using a new dynamic-explicity program SAIT_STAMP the analysis of forming a front door panel is presented. The analysis consists of 7 processes including drawing trimming flanging and springback. From the analysis results it is shown that adaptive refinement scheme and robust trimming algorithm enable SAIT_STAMP to simulate the multi-stage forming of automotive parts with large and complex geometry.

  • PDF

플라스틱 소재의 탈변색 열화 메커니즘 분석 (A Study for Degradation Mechanism of Plastic Materials)

  • 윤형준;정원욱;변두진;최기대
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권4호
    • /
    • pp.173-181
    • /
    • 2007
  • Out door exposure to daylight and weather climate conditions can cause adverse effect on the properties of automotive plastic materials. The effects of sunlight exposure, especially ultra violet (UV) radiation, can break down the chemical bonds in a polymeric material. This degradation process is called photo-degradation and ultimately leads to color changes, cracking, chalking, the loss of physical properties and deterioration of other properties. To explore the effect of sunlight exposure on the automotive materials, this study investigated photo-oxidation degree and surface property change of molding parts by analytical methods. For the further study, accelerated weathering test methods are proposed, which can correlate with out door weathering, to predict long term performance of automotive plastic materials.

  • PDF

TPO Dynamics in Automotive: The Development of Soft TPO for Better Recycle

  • Cho, Seong-Min;Shin, Dong-Myung;Kim, Chang-Gyou
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.137-138
    • /
    • 2006
  • TPOs based on polypropylene has been dominating materials in hard automotive parts such as in bumper fascia, instrumental panel and door trim panel owing to their variety of advantages compared to engineering plastics and steels for years. Recently as environmental regulations related to recycle have been strengthened, the use of TPOs in soft automotive parts such as instrument panel skin and door trim skin is being required much more.. Therefore, in this study, we' d like to give an overview of soft TPOs and introduce soft TPO materials requirement and preferable materials composition by vacuum thermoforming and powder slush molding, respectively.

  • PDF

자동차 외판 플랜징/헤밍 공정에 대한 유한요소해석 모델링 (Finite Element Modeling of Flanging/Hemming Process for Automotive Panels)

  • 김헌영;임희택;최광용;이우홍;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2002
  • The 2nd forming process of flanging/hemming has recently many interest because it determines external quality of automobile. It is difficult to apply finite element simulation in flanging/hemming due to small element size which needs for expression of bending effect on the die corner and big model size of side door, back door, tank lid and like opening Parts. This paper shows the process of flanging/hemming simulation using finite element model for automotive panels. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the flanging and hemming operations.

  • PDF

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제2보) : 자동차 사이드 도어 임팩트 빔에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Second Report) : Application to Automotive Side-Door Impact Beams)

  • 남윤의
    • 산업경영시스템학회지
    • /
    • 제34권3호
    • /
    • pp.8-15
    • /
    • 2011
  • The computer-based simulation tools are currently used overwhelmingly to simulate the performance of automotive designs. Then, the search for an optimal solution that satisfies a number of performance requirements usually involves numerous iterations among several simulation tools. Therefore, meta-modeling techniques are becoming widely used to build approximations of computationally expensive computer analysis tools. The set-based approach proposed in the first report of a four-part paper has been a test bed for the innovation of vehicle structure design process in the Structural Design and Fabrication Committee of JSAE(Society of Automotive Engineers of Japan). In the second report, the proposed design approach is illustrated with a side-door impact beam design example using meta-modeling techniques.

프런트 도어의 드로잉 공정해석과 프레스 금형 제작 공정에 관한 연구 (Study on Drawing Analysis of an Automotive Front Door and Stamping Die Manufacturing Process)

  • 박용국
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.586-593
    • /
    • 1998
  • In recent automotive industries there has been significant increase in applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles. Enhancement of die quality and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However to successfully apply the result of simulation by a commercial package to the die manufacturing development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcoming of available sheet metal forming softwares. Based on the results of numerical analysis of front door outer panel forming. this paper evaluates the applicability of simulation results to the real die manufacturing for automotive body panels. Also it attempts to select an optimal die manufacturing process including design machining and tryout. Lastly it discusses the expected effects by adopt-ing the selected process in a real stamping die manufacturing facility.

  • PDF

자동차 도어의 진동 저감을 위한 제진재 설계에 관한 연구 (A Study on Damping Material Design for Vibration Suppression of the Automotive Door)

  • 정명근;김찬묵;사종성;박종오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1072-1076
    • /
    • 2004
  • In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials. locations and size of the treatment. Generally, the CAE method uses modal strain-energy information of the bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. This paper proposes a design of the damping material with a CAE(Computer Aided Engineering) methodology based on finite element analysis and DOE(Design Of Experiments) to optimize damping treatments.

  • PDF

도어 모듈 플레이트의 동특성 분석에 관한 연구 (A Study on the Dynamic Characteristics of Door Module Plate)

  • 배철용;김완수;김찬중;이봉현;장운성;모유철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.918-923
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.

  • PDF

빌트인 양문형 냉장고의 캐비닛 구조해석 및 도어 상하단차와 앞뒤단차의 평가 (Structural Analysis of Cabinet in Built-in Side-by-Side Refrigerator and Evaluation of Door Height Difference and Door Flatness Difference)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.30-36
    • /
    • 2018
  • Since the freezer compartment and the refrigerating compartment are located side by side in a side-by-side refrigerator, the problems of the door height difference (DHD) and door flatness difference (DFD) have been constantly raised. Deformation of the cabinet of a built-in side-by-side refrigerator under food and thermal loads was analyzed by the finite element software ANSYS. The DHD and DFD, occurring due to the deformation of the cabinet, evaluated. From the results of the analysis of the cabinet, the 3D CAD software CATIA was used to geometrically translate and rotate the freezing and refrigerating compartment doors, in consideration of the displacement of the hinge fastening point. Then, the coordinates of two points on the upper corner of the doors were determined, and the DHD and DFD were obtained. It found that the thermal load, occurring under normal operation conditions, decreases the door height difference, but increases the door flatness difference. Values of the analyzed DHD and DFD appear smaller than the acceptance criteria used by the refrigerator manufacturer.

AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발 (Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank)

  • 전성진;이문용;김병민
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.