• Title/Summary/Keyword: Automation Mapping

Search Result 77, Processing Time 0.024 seconds

Integration of History-based Parametric CAD Model Translators Using Automation API (오토메이션 API를 사용한 설계 이력 기반 파라메트릭 CAD 모델 번역기의 통합)

  • Kim B.;Han S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • As collaborative design and configuration design are of increasing importance in product development, it becomes essential to exchange the feature and parametric CAD models among participants. A history-based parametric method has been proposed and implemented. But each translator which exchanges the feature and parametric information tends to be heavy because to implement duplicated functions such as the identification of the selected geometries, mapping between features which have different attributes. Furthermore. because the history-based parametric translator uses the procedural model as the neutral format, which is the XML macro file, the history-based parametric translators need a geometric modeling kernel to generate an internal explicit geometric model. To ease the problem, we implemented a shared integration platform, the TransCAD. The TransCAD separates translators from the XML macro files. The translators for various CAD systems need to communicate with only the TransCAD. To support the communication with the TransCAD, we exposed the functions of the TransCAD by using the Automation APIs, which is developed by Microsoft. The Automation APIs of the TransCAD consist of the part modeling functions, the data extraction functions, and the utility functions. Each translator uses these functions to translate a parametric CAD model from the sending CAD system into the XML format, or from the in format into the model of the receiving CAD system This paper introduces what the TransCAD is and how it works for the exchange of the feature and parametric models.

Mobile Robot Localization and Mapping using a Gaussian Sum Filter

  • Kwok, Ngai Ming;Ha, Quang Phuc;Huang, Shoudong;Dissanayake, Gamini;Fang, Gu
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.251-268
    • /
    • 2007
  • A Gaussian sum filter (GSF) is proposed in this paper on simultaneous localization and mapping (SLAM) for mobile robot navigation. In particular, the SLAM problem is tackled here for cases when only bearing measurements are available. Within the stochastic mapping framework using an extended Kalman filter (EKF), a Gaussian probability density function (pdf) is assumed to describe the range-and-bearing sensor noise. In the case of a bearing-only sensor, a sum of weighted Gaussians is used to represent the non-Gaussian robot-landmark range uncertainty, resulting in a bank of EKFs for estimation of the robot and landmark locations. In our approach, the Gaussian parameters are designed on the basis of minimizing the representation error. The computational complexity of the GSF is reduced by applying the sequential probability ratio test (SPRT) to remove under-performing EKFs. Extensive experimental results are included to demonstrate the effectiveness and efficiency of the proposed techniques.

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Obstacle Detection Algorithm Using Forward-Viewing Mono Camera (전방 모노카메라 기반 장애물 검출 기술)

  • Lee, Tae-Jae;Lee, Hoon;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.858-862
    • /
    • 2015
  • This paper presents a new forward-viewing mono-camera based obstacle detection algorithm for mobile robots. The proposed method extracts the coarse location of an obstacle in an image using inverse perspective mapping technique from sequential images. In the next step, graph-cut based image labeling is conducted for estimating the exact obstacle boundary. The graph-cut based labeling algorithm labels the image pixels as either obstacle or floor as the final outcome. Experiments are performed to verify the obstacle detection performance of the developed algorithm in several examples, including a book, box, towel, and flower pot. The low illumination condition, low color contrast between floor and obstacle, and floor pattern cases are also tested.

Development of an EEG and EP Mapping System based on the Graphical User Interface and Machine Automation (Graphical User Interface 및 자동화에 기초를 둔 뇌파 및 뇌 유발 전위 진단 시스템)

  • Kim, I.Y.;Lee, T.Y.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.81-84
    • /
    • 1994
  • A clinically oriented EEG and EP mapping system was developed with user-friendly interface and easy interactive operations. The system was based on the graphical user interface developed with C/C++ and Software Development Kit (SDK) operated under Microsoft Windows 3.1. Continuous acquisition for the EEG signal and burst mode acquisition for EEG signal syncronized to the external stimuli arc implemented with real time display. A neural network based automatic artifact discrimation is developed and implemented with which examination time can be reduced by a factor of 3 or more. Several bands of spectral maps and spectrums arc displayed for EEG diagnosis. Amplitude maps of EP signal at specified times by operator are displayed together with cine mode of EP maps for dynamic study. Source localization and other statistical signal processing are also included.

  • PDF

Semi-automatic Field Morphing : Polygon-based Vertex Selection and Adaptive Control Line Mapping

  • Kwak, No-Yoon
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.15-21
    • /
    • 2007
  • Image morphing deals with the metamorphosis of one image into another. The field morphing depends on the manual work for most of the process, where a user has to designate the control lines. It takes time and requires skills to have fine quality results. It is an object of this paper to propose a method capable of realizing the semi-automation of field morphing using adaptive vertex correspondence based on image segmentation. The adaptive vertex correspondence process efficiently generates a pair of control lines by adaptively selecting reference partial contours based on the number of vertices that are included in the partial contour of the source morphing object and in the partial contour of the destination morphing object, in the pair of the partial contour designated by external control points through user input. The proposed method generates visually fluid morphs and warps with an easy-to-use interface. According to the proposed method, a user can shorten the time to set control lines and even an unskilled user can obtain natural morphing results as he or she designates a small number of external control points.

A Study on SCSM for Substation Automation System (변전소 자동화 시스템을 위한 통신 프로토콜 사상에 관한 연구)

  • Kim, Jeong-Soo;Kim, Sang-Sig;Jang, Hyuk-Soo;Chung, Tae-Sun;Jang, Byung-Tae;Lee, Jae-Wook;Kim, Byeong-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.381-383
    • /
    • 2005
  • 변전소 자동화 시스템에 관한 IEC 61850 표준은 급속한 통신 기술의 변화를 수용하기 위해 실제적인 통신 서비스와 응용 영역을 분리하여 정의하였다. 이는 미래 지향적인 표준을 지향하는 것으로, 표준은 정보 모델과 추상적인 서비스 모델을 정의하고 이를 실제 통신 프로토콜에 사상(mapping)하는 방법을 제시하였다. 이러한 사상의 방법을 SCSM(Specific Communication Service Mapping)이라 명시하고 있다. 본 논문은 표준에서 제시하는 SCSM 과 사상되는 통신 프로토콜인 MMS(Manufacturing Message Specification), TCP/IP, Ethernet을 설명한다.

  • PDF

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Sweet Persimmons Classification based on a Mixed Two-Step Synthetic Neural Network (혼합 2단계 합성 신경망을 이용한 단감 분류)

  • Roh, SeungHee;Park, DongGyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1358-1368
    • /
    • 2021
  • A research on agricultural automation is a main issues to overcome the shortage of labor in Korea. A sweet persimmon farmers need much time and labors for classifying profitable sweet persimmon and ill profitable products. In this paper, we propose a mixed two-step synthetic neural network model for efficiently classifying sweet persimmon images. In this model, we suggested a surface direction classification model and a quality screening model which constructed from image data sets. Also we studied Class Activation Mapping(CAM) for visualization to easily inspect the quality of the classified products. The proposed mixed two-step model showed high performance compared to the simple binary classification model and the multi-class classification model, and it was possible to easily identify the weak parts of the classification in a dataset.

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF