• Title/Summary/Keyword: Automatic generation algorithm

Search Result 277, Processing Time 0.022 seconds

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (II): Development of the Automatic System Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (II): 시스템 자동결합 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the automatic system generation algorithm based on the element combination algorithm discussed in the first part of this paper for designing an arbitrary type of the automatic transmissions is proposed. The powertrain design software using these algorithms is developed. This automotive powertrain design software with user-friendly graphic user interface has two main modules. The first module, the automatic power flow generation module, is already discussed in the previous paper. The second module dealing with the automatic system generation algorithm is discussed in this paper. The power-flow simulation software fur the arbitrary type of powertrain is then developed. The simulation and experimental results of the vehicle equipped with two planetary gear type automatic transmission are compared to validate the proposed algorithms and developed software. The simulation results demonstrate the good agreement with the experimental results.

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (I): Development of the Automatic Powerflow Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (I): 동력흐름 자동생성 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, the element combination algorithm for designing an arbitrary type of the automatic transmissions is proposed. The powertrain simulation software using this algorithm is then developed. The deliveries of the angular velocities and torques are only considered for the motion characteristics of the automatic transmissions. The effects of the vibration and noise are not considered. The automatic transmission is defined by the basic elements, i.e., planetary gear set, clutch, brake, shaft, general gear, and inertia. The transmission system is defined by the combination of these elements. The element combination matrices automatically generate the equations of motion for each shift. The self error-correcting algorithm is also developed to verify the element combination algorithm. This automotive powertrain simulation/design software with user-friendly graphic user interface has two main modules. The first module, the automatic powerflow generation module, mainly consists of the automatic powerflow and component generation algorithms. This paper covers the theory and application for the first module. The second module deals with the automatic system generation algorithm and will be discussed in the second paper.

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

A Path Generation Algorithm of an Automatic Guided Vehicle Using Sensor Scanning Method

  • Park, Tong-Jin;Ahn, Jung-Woo;Han, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In this paper, a path generation algorithm that uses sensor scannings is described. A scanning algorithm for recognizing the ambient environment of the Automatic Guided Vehicle (AGV) that uses the information from the sensor platform is proposed. An algorithm for computing the real path and obstacle length is developed by using a scanning method that controls rotating of the sensors on the platform. The AGV can recognize the given path by adopting this algorithm. As the AGV with two-wheel drive constitute a nonholonomic system, a linearized kinematic model is applied to the AGV motor control. An optimal controller is designed for tracking the reference path which is generated by recognizing the path pattern. Based on experimental results, the proposed algorithm that uses scanning with a sensor platform employing only a small number of sensors and a low cost controller for the AGV is shown to be adequate for path generation.

Automatic Mesh Generation by Delaunay Triangulation and Its Application to Remeshing (Delaunay 삼각화기법을 이용한 유한요소망의 자동생성과 격자재구성에의 응용)

  • Jeong, Hyeon-Seok;Kim, Yong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.553-563
    • /
    • 1996
  • An algorithm for automatic mesh generation of two-dimensional arbitrary planar domain is proposed by using Delaunay triangulation algorithm. An efficient algorithm is proposed for the construction of Delaunay triangulation algorithm over convex planar domain. From the definition of boundary, boundary nodes are first defined and then interior nodes are generated ensuring the Delaunay property. These interior nodes and the boundary nodes are then linked up together to produce a valid triangular mesh for any finite element analysis. Through the various example, it is found that high-quality triangular element meshes are obtained by Delaunay algorithm, showing the robustness of the current method. The proposed mesh generation scheme has been extended to automatic remeshing, which is applicable to FE analysis including large deformation and large distortion of elements.

The Development of the Automatic Triangular Mesh Generation Software Using Modified Lo's Algorithm (수정된 Lo의 요소망 생성 알고리즘은 이용한 자동 삼각 요소망 생성 소프트웨어의 개발)

  • 김병옥;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • For last two decades numerous automatic mesh generation algorithms for various two dimensional objects have been introduced continuously and among them triangular mesh generation schemes have been majority because of efficiency and controllability. In our study, an existing triangular mesh generation algorithm developed by Lo is totally modified to more improve node distribution, element shape, and objects shape independency. ft is composed of node generation part and element generation part. In order to find a suitable node position within geometry, the suggested algorithm searches desirable positions of points within boundary and optimizes node position to generate comparatively well-shaped elements. More over, the suggested algorithm handles various complex two dimensional objects and its meshing speed shows superiority to those of the existing triangulation mesh generation algorithms. It is fully automated in a sense of constructing object boundary and hence can be directly used as an independent meshing software.

  • PDF

An Algorithm of Automatic Mesh Generation by Recursive Subdivisions (순환적 분할에 의한 유한 요소망 자동 생성 알고리즘)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.145-155
    • /
    • 1996
  • This paper suggests a new algorithm of automatic mesh generation over planar domains with arbitrarily shaped boundaries and control curves. The algorithm is based on the method of recursively subdividing the domain by the path connecting, with minimum penalty value, two points on the super-loop, which consists of the boundaries and the control curves, The algorithm is not subject to any limitation on the shape of the domain, and its process can be fully automated. Therefore, this algorithm can be implemented into computer programs which require minimal user intervention while generating finite element meshes over complicated domains. This algorithm can also be easily extended for application to the generation of meshes over curved surfaces, or to the adaptive mesh generation.

  • PDF

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

A Study on FIBEX Automatic Generation Algorithm for FlexRay Network System (FlexRay 네트워크 시스템을 위한 FIBEX 자동 생성 알고리즘에 관한 연구)

  • Park, Ji-Ho;Lee, Suk;Lee, Kyung-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • As vehicles become more intelligent for safety and convenience of drivers, in-vehicle networking systems such as controller are network (CAN) have been widely used due to increasing number of electronic control unit (ECU). Recently, FlexRay was developed to replace CAN protocol in chassis networking systems, to remedy the shortage of transmission capacity and unsatisfactory real-time transmission delay of conventional CAN. However, it is difficult for vehicle network designers to calculate platform configuration registers (PCR) and determine a base cycle or slot length of FlexRay. To assist vehicle network designers for designing FlexRay cluster, this paper presents automatic field bus exchange format (FIBEX) generation algorithm from CANdb information, which is de-facto standard database format for CAN. To design this program, structures of FIBEX, CANdb and relationship among PCR variables are analyzed.

Automatic Mesh Generation with Quadrilateral Finite Elements (사각형 유한요소망의 자동생성)

  • 채수원;신보성;민중기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2995-3006
    • /
    • 1993
  • An automatic mesh generation scheme has been developed for finite element analysis with two-dimensional, quadrilateral elements. The basic strategies of the method are to transform the analysis domain into loops with key nodes and the loops are recursively subdivided into subloops with the use of best split lines. Finally by using the basic loop operators, the meshes are completed. In this algorithm an eight-node loop operator is proposed, which is useful in the area where the change of element size is large and the splitting criteria for subdividing the loops have also been modified to the existing algorithms. Lines, arcs, and cubic spline curves are used to define the boundaries of analysis domain. Sample meshes for several geometries are presented to demonstrate the robustness of the algorithm.