• Title/Summary/Keyword: Automatic extraction

Search Result 881, Processing Time 0.026 seconds

Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data (항공 Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출)

  • Woo, Choong-Shik;Yoon, Jong-Suk;Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.251-258
    • /
    • 2007
  • Airborne Lidar (light detection and ranging) can be an effective alternative in forest inventory to overcome the limitations of conventional field survey and aerial photo interpretation. In this study, we attempt to develop methodologies to identify individual trees and to estimate tree height from airborne Lidar data. Initially, digital elevation model (DEM) data representing the exact ground surface were generated by removing non-ground returns from the multiple-return laser point clouds, obtained over the coniferous forest site of rugged terrain. Based on the canopy height model (CHM) data representing non-ground layer, individual tree heights are extracted through pseudo-grid method and moving window filtering algorithm. Comparing with field survey data and aerial photo interpretation on sample plots, the number of trees extracted from Lidar data show over 90% accuracy and tree heights were underestimated within 1.1m in average at two plantation stands of pine (Pinus koraiensis) and larch (Larix leptolepis).

Gesture Recognition Using Stereo Tracking Initiator and HMM for Tele-Operation (스테레오 영상 추적 자동초기화와 HMM을 이용한 원격 작업용 제스처 인식)

  • Jeong, Ji-Won;Lee, Yong-Beom;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2262-2270
    • /
    • 1999
  • In this paper, we describe gesture recognition algorithm using computer vision sensor and HMM. The automatic hand region extraction has been proposed for initializing the tracking of the tele-operation gestures. For this, distance informations(disparity map) as results of stereo matching of initial left and right images are employed to isolate the hand region from a scene. PDOE(positive difference of edges) feature images adapted here have been found to be robust against noise and background brightness. The KNU/KAERI(K/K) gesture instruction set is defined for tele-operation in atomic electric power stations. The composite recognition model constructed by concatenating three gesture instruction models including pre-orders, basic orders, and post-orders has been proposed and identified by discrete HMM. Our experimental results showed that consecutive orders composed of more than two ones are correctly recognized at the rate of above 97%.

  • PDF

Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity

  • June, Naw Chit Too;Cui, Xuenan;Li, Shengzhe;Kim, Hak-Il;Kwack, Kyu-Sung
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.

Accuracy Assessment of 3D Reconstruction Using LiDAR Data (LiDAR 자료를 이용한 3차원복원 정확도 평가)

  • Chung, Dong-Ki
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.81-104
    • /
    • 2005
  • Accurate 3D models in urban areas are essential for a variety of applications, such as virtual visualization, CIS, and mobile communications. LiDAR(Light Detection and Ranging) is a relatively new technology for directly obtaining 3D points. Because Manual 3D data reconstruction from LiDAR data is very costly and time consuming, many researchs is focused on the automatic extraction of the useful data. In this paper, we classified ground and non-ground points data from LiDAR data by using filtering, and we reconstructed the DTM(Digital Terrain Model) using ground points data, buildings using nonground points data. After the reconstruction, we assessed the accuracy of the DTM and buildings. As a result of, DTM from LiDAR data were 0.16m and 0.59m in high raised apartments areas and low house areas respectively, and buildings were matched with the accuracy of a l/5,000 digital map.

  • PDF

Spatial Image Information Generation of Rock Wall by Automatic Focal Length Extraction System (초점거리 자동추출 시스템에 의한 암벽의 공간영상정보 생성)

  • Lee, Jae-Kee;Lee, Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.427-436
    • /
    • 2007
  • Because the slope made up the construction of any other facilities, has many risks of a collapse, existing inspection methods to collect information for a construction site of slope bring up a long time of inspection period, cost and approach for a measuring instrument and it presents the critical point of collecting materials. For getting images to use zoom lens in any positions this study will use free zoomer constructed values of data classified by the focal length develop Image Loader system to make it load not only camera information but also camera test data values of the focal length took a photograph automatically if it measure to use a variety of cameras or other lens. Also, as it constructs three dimensions spatial image information from images of obtained objects this study presents effective basic materials of slope surveying and inspection and it shows exact surveying methods for dangerous slope not to access.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 2) Automation, Implementation, and Experimental Results

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.205-216
    • /
    • 2014
  • Multi-camera systems have been widely used as cost-effective tools for the collection of geospatial data for various applications. In order to fully achieve the potential accuracy of these systems for object space reconstruction, careful system calibration should be carried out prior to data collection. Since the structural integrity of the involved cameras' components and system mounting parameters cannot be guaranteed over time, multi-camera system should be frequently calibrated to confirm the stability of the estimated parameters. Therefore, automated techniques are needed to facilitate and speed up the system calibration procedure. The automation of the multi-camera system calibration approach, which was proposed in the first part of this paper, is contingent on the automated detection, localization, and identification of the object space signalized targets in the images. In this paper, the automation of the proposed camera calibration procedure through automatic target extraction and labelling approaches will be presented. The introduced automated system calibration procedure is then implemented for a newly-developed multi-camera system while considering the optimum configuration for the data collection. Experimental results from the implemented system calibration procedure are finally presented to verify the feasibility the proposed automated procedure. Qualitative and quantitative evaluation of the estimated system calibration parameters from two-calibration sessions is also presented to confirm the stability of the cameras' interior orientation and system mounting parameters.

Lineament analysis in the euiseong area using automatic lineament extraction algorithm (자동 선구조 추출 알고리즘을 이용한 경북 의성지역의 선구조 분석)

  • 김상완
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.19-31
    • /
    • 1999
  • In this study, we have estimated lineaments in the Euiseong area, Kyungbuk Province, from Landsat TM by applying the algorithm developed by Kim and Won et al. which can effectively reduce the look direction bias associated with the Sun's azimuth angle. Fratures over the study area were also mapped in the field at 57 selected sites to compare them with the results from the satellite image. The trends of lineaments estimated from the Landsat TM images are characterized as $N50^{\circ}$~70W, NS~$N10^{\circ}$W, and $N10^{\circ}$~$60^{\circ}$E trends. The spatial distribution of lineaments is also studied using a circular grid, and the results show that the area can be divided into two domains : domain A in which NS~$N20^{\circ}$E direction is dominant, and domain B in which west-north-west direction is prominent. The trends of lineaments can also be classified into seven groups. Among them, only C, D and G trends are found to be dominant based upon Donnelly's nearest neighbor analysis and correlations of lineament desities. In the color composite image produced by overlaying the lineament density map of these C-, D-, and G-trends, G-trend is shown to be developed in the whole study area while the eastern part of the area is dominated by D-trend. C-trend develops extensively over the whole are except the southeastern part. The orientation of fractures measured at 35 points in the field shows major trends of NS~$N30^{\circ}$E, $N50^{\circ}$~$80^{\circ}$W, and N80$^{\circ}$E~EW, which agree relatively well with the lineaments estimated form the satellite image. The rose diagram analysis fo field data shows that WNW-ESE trending discontinuities are developed in the whole area while discontinuities of NS~$N20^{\circ}$E are develped only in the estern part, which also coincide with the result from the satellite image. The combined results of lineaments from the satellite image and fracture orientation of field data at 22 points including 18 minor faults in Sindong Group imply that the WNW-ESE trend is so prominent that Gumchun and Gaum faults are possibly extended up to the lower Sindong Group in the study area.

  • PDF

Analysis of Accuracy and DTM Generation Using Digital Photogrammetry (수치사진 측량을 이용한 DTM 추출 및 정확도 분석)

  • Park, Jin-Seong;Hong, Sung-Chang;Sung, Jae-Ryeol;Lee, Byung-Hwan
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.301-306
    • /
    • 2010
  • Recently GIS is not only displaying and servicing data on the 2D, but also is changing rapidly to display and service 3D data. Also 3D related technology is developing actively. For display of 3D data, terrain DTM has become a basis. Generally, to acquire DTM, users are using LIDAR data or digital map's contour line. However, if using these data for producing DTM, users need to additional cost and data lead time. And hard to update terrain data. For possibility of solving these problem, this study did DTM extraction with automatic matching for aerial photograph, and analysed the result with measurement of Orthometric height and excuted accuracy through DTM(which extracted from digital photogrammetric technique). As a result, we can get a high accuracy of RMSE (0.215m).

  • PDF

Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences (낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출)

  • Park, Jung-Woo;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • The paper proposes a novel unsupervised video object segmentation algorithm for image sequences with low depth-of-field (DOF), which is a popular photographic technique enabling to represent the intention of photographer by giving a clear focus only on an object-of-interest (OOI). The proposed algorithm largely consists of two modules. The first module automatically extracts OOIs from the first frame by separating sharply focused OOIs from other out-of-focused foreground or background objects. The second module tracks OOIs for the rest of the video sequence, aimed at running the system in real-time, or at least, semi-real-time. The experimental results indicate that the proposed algorithm provides an effective tool, which can be a basis of applications, such as video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing systems.