• 제목/요약/키워드: Automatic diagnosis

Search Result 362, Processing Time 0.029 seconds

A Study on the Condition Diagnosis for A Gas-insulated Transformer using Decomposition Gas Analysis (가스분해 분석기법을 활용한 가스 전열 변압기의 상태 진단 연구)

  • Ah-Reum, Kim;Byeong Sub, Kwak;Tae-Hyun, Jun;Hyun-joo, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • A growing number of gas-insulated transformers in underground power substations in urban areas are approaching 20 years of operation, the time when failures begin to occur. It is thus essential to prevent failure through accurate condition diagnosis of the given facility. Various solid insulation materials exist inside of the transformers, and the generated decomposition gas may differ for each gas-insulated equipment. In this study, a simulation system was designed to analyze the deterioration characteristics of SF6 decomposition gas and insulation materials under the conditions of partial discharge and thermal fault for diagnosis of gas-insulated transformers. Degradation characteristics of the insulation materials was determined using an automatic viscometer and FT-IR. The analysis results showed that the pattern of decomposition gas generation under partial discharge and thermal fault was different. In particular, acetaldehyde was detected under a thermal fault in all types of insulation, but not under partial discharge or an arc condition. In addition, in the case of insulation materials, deterioration of the insulation itself rapidly progressed as the experimental temperature increased. It was confirmed that it was possible to diagnose the internal discharge or thermal fault occurrence of the transformer through the ratio and type of decomposition gas generated in the gas-insulated transformer.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.

Improved Snakes Algorithm for Tongue Image Segmentation in Oriental Tongue Diagnosis (한방 설진에서 혀 영상 분할을 위한 개선된 스네이크 알고리즘)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • Tongue image segmentation is critical for automation of the tongue diagnosis system. However, most image segmentation methods for tongue diagnosis systems in oriental medicine have been proposed as user-based manual types or semi-automatic types. This study proposed a new method for tongue image segmentation, which is the most important image processing stage for complete automation of the tongue diagnosis system in oriental medicine. The proposed method improved the conventional snake algorithm, by making improvement on the internal energy function so that, as the points move outward reversely, the snake energy function is minimized, by using the image characteristics of tongue images. To calculate external energy, hierarchical spatial filtering is applied to ensure resistance against noise. Also, The proposed method was tested by using sample images and actual images, and showed more robustness against the background noise than the conventional snake algorithm. And, when one selected point was moved by the improved snake algorithm, energy values at the starting, middle, and end points were analyzed, and showed robustness that does not fall in the local minima.

Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features (영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템)

  • Lee, Min-taek;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.826-832
    • /
    • 2016
  • In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.

Fault Detection and Diagnosis Methods for Polymer Electrolyte Fuel Cell System (고분자전해질연료전지를 위한 고장 검출 및 진단 기술)

  • LEE, WON-YONG;PARK, GU-GON;SOHN, YOUNG-JUN;KIM, SEUNG-GON;KIM, MINJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.252-272
    • /
    • 2017
  • Fuel cell systems have to satisfy acceptable operating reliability, sufficient lifetime and price to enter the market in competition with existing products. Fuel cells are made up of complex element technologies and various problems related to the failure of the components can affect the reliability and safety of the system. This problem can be overcome by introducing a monitoring and supervisory control system in addition to automatic control to detect the failure of the fuel cell quickly and properly diagnose the performance degradation. For the fault detection and diagnosis of polymer electrolyte fuel cells, the model based method using the theoretical superposition value and the non-model based method of checking the signal tendency or the converted signal characteristic can be applied. The methods analyzed in this paper can contribute to the development of integrated monitoring and control technology for the whole system as well as the stack.

Software Design about Integrated Fault Diagnosis for the Propulsion System of the Tracked Amphibious Assault Vehicle (궤도형 상륙돌격차량용 추진장치의 통합고장진단 S/W 설계)

  • Lee, Changkyu;Choi, Byeongho;Park, Daegon;Koo, Youngho;Shim, Sangchul;Chang, Kyogun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.457-466
    • /
    • 2021
  • This paper describes the design of model-based fault diagnosis software to apply to the propulsion system in tracked amphibious assault vehicle which consists of an engine, a transmission, a cooling system, and two waterjets. This software includes specific functions to detect the failures regarding sensor malfunctions, mechanical malfunctions, control errors, and communication errors. This software generates the proper malfunction codes which are classified as the warning and caution. In order to validate the fault diagnosis software, the manual and automatic test are performed using the test program with 32 test cases. Test results show that the designed fault diagnosis software is reliable and effective for applying to the propulsion system.

An Implementation of the Real Time Speech Recognition for the Automatic Switching System (자동 교환 시스템을 위한 실시간 음성 인식 구현)

  • 박익현;이재성;김현아;함정표;유승균;강해익;박성현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.31-36
    • /
    • 2000
  • This paper describes the implementation and the evaluation of the speech recognition automatic exchange system. The system provides government or public offices, companies, educational institutions that are composed of large number of members and parts with exchange service using speech recognition technology. The recognizer of the system is a Speaker-Independent, Isolated-word, Flexible-Vocabulary recognizer based on SCHMM(Semi-Continuous Hidden Markov Model). For real-time implementation, DSP TMS320C32 made in Texas Instrument Inc. is used. The system operating terminal including the diagnosis of speech recognition DSP and the alternation of speech recognition candidates makes operation easy. In this experiment, 8 speakers pronounced words of 1,300 vocabulary related to automatic exchange system over wire telephone network and the recognition system achieved 91.5% of word accuracy.

  • PDF

Deep Learning-based Spine Segmentation Technique Using the Center Point of the Spine and Modified U-Net (척추의 중심점과 Modified U-Net을 활용한 딥러닝 기반 척추 자동 분할)

  • Sungjoo Lim;Hwiyoung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Osteoporosis is a disease in which the risk of bone fractures increases due to a decrease in bone density caused by aging. Osteoporosis is diagnosed by measuring bone density in the total hip, femoral neck, and lumbar spine. To accurately measure bone density in the lumbar spine, the vertebral region must be segmented from the lumbar X-ray image. Deep learning-based automatic spinal segmentation methods can provide fast and precise information about the vertebral region. In this study, we used 695 lumbar spine images as training and test datasets for a deep learning segmentation model. We proposed a lumbar automatic segmentation model, CM-Net, which combines the center point of the spine and the modified U-Net network. As a result, the average Dice Similarity Coefficient(DSC) was 0.974, precision was 0.916, recall was 0.906, accuracy was 0.998, and Area under the Precision-Recall Curve (AUPRC) was 0.912. This study demonstrates a high-performance automatic segmentation model for lumbar X-ray images, which overcomes noise such as spinal fractures and implants. Furthermore, we can perform accurate measurement of bone density on lumbar X-ray images using an automatic segmentation methodology for the spine, which can prevent the risk of compression fractures at an early stage and improve the accuracy and efficiency of osteoporosis diagnosis.

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.

Design of Head Blood Pressure(HBP) Measurement System and Correlativity Extraction of Blood Pressure(BP) and HBP (두부혈압 측정 시스템의 설계 및 두부혈압과 상완혈압과의 상관성 추출)

  • 이용흠;정석준;장근중;정동영
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.381-389
    • /
    • 2003
  • Various adult diseases (cerebral apoplexy, athymiait, etc.) result from hypertension, blood circulation disturbance and increment of HBP. In early diagnosis of these diseases, MRI, X-ray and PET have been used rather aim for treatment than for a prevention of disease. Since. cerebral apoplexy and athymiait could appear to the regular/irregular persons, it is very important to measure HBP which has connection with cerebral blood flow state. HBP has more diagnosis elements than that of BP. So, we can diagnose accurate hypertension by measuring of HBP. But, existing sphygmomanometers and automatic BP monitors can not measure HBP, and can not execute complex function(measuring of BP/HBP, blood flow improvement). Purpose of this paper is to develop a system and algorithm which can measure BP/HBP for accurate diagnosis. Also, we extracted diagnosis factors by correlativity analysis of BP/HBP. Maximum pressure of HBP corresponds to 62% that of BP, Minimum pressure of HBP corresponds to 46% that of BP. Therefore, we developed the multi-function automatic blood pressure monitor which can measure BP/HBP and improve cerebral blood flow state.