• 제목/요약/키워드: Automatic Vehicle Control

검색결과 302건 처리시간 0.031초

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

Micro computer를 이용한 자동차용 brake 시험 자동화 system에 대한 고찰 (Micro computer-controlled automatic test method for automotive brake system)

  • 정화영
    • 오토저널
    • /
    • 제9권5호
    • /
    • pp.6-18
    • /
    • 1987
  • Owing to remarkable development in automotive industry, vehicle performance comes close to perfection and guarantee of stability is getting emphasized in accordance with high speed trend in vehicle. In recent years, the utilization of automatic test method for research and development of automotive brake system is being propelled actively, which pursue whole automatic control from simple measurement to data acquisition. The main subject of this paper is to make a brief explanation on Micro computer controlled Automatic Test Method for Automotive Brake System which makes it possible to test with high accuracy and speed.

  • PDF

지게차 자동변속기 저속주행기능 설계 (Design of Creep Function for Forklift Automatic Transmission)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.46-55
    • /
    • 2021
  • A forklift is a powered industrial vehicle used to lift and move materials over short distances. Nowadays, almost all forklifts are equipped with an automatic transmission due to its improved operator comfort and increased productivity. Thanks to marked improvement of transmission control unit equipped with highly-advanced microcontrollers, recently developed automatic transmission for forklift have various auxiliary functions such as creep, auto retardation, and automatic shift with excellent shift quality. This paper deals with the creep function which enables one to maneuver a forklift at the designated low speed by slip control of clutches. The design of creep function was based on four modes of creep operation depending on the status of the operator's shift lever and accelerator pedal. Control algorithms and control parameters for each mode were designed to achieve the desired static and dynamic performance. Vehicle test for the designed creep function was carried out with an independently developed embedded controller. Test results confirmed good creep speed control without speed error at a steady state with a mild shift shock during mode changes by stepping or releasing the accelerator.

Provision of Two-area Automatic Generation Control by Demand-side Electric Vehicle Battery Swapping Stations

  • Xie, Pingping;Shi, Dongyuan;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.300-308
    • /
    • 2016
  • Application of demand-side resources to automatic generation control (AGC) has a great significance for improving the dynamic control performance of power system frequency regulation. This paper investigates the possibility of providing regulation services by demand-side energy storage in electric vehicle battery swapping stations (BSS). An interaction framework, namely station-to-grid (S2G), is presented to integrate BSS energy storage into power grid for giving benefits to frequency regulation. The BSS can be regarded as a lumped battery energy storage station through S2G framework. A supplementary AGC method using demand-side BSS energy storage is developed considering the vehicle user demand of battery swapping. The effects to the AGC performance are evaluated through simulations by using a two-area interconnected power grid model with step and random load disturbance. The results show that the demand-side BSS can significantly suppress the frequency deviation and tie-line power fluctuations.

퍼셉션 넷에 기반한 차량의 자동 차선 위치 제어에 관한 연구 (A Study on the automatic Lane keeping control method of a vehicle based upon a perception net)

  • 부광석;정문영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.257-257
    • /
    • 2000
  • The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A predictive control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in forward and backward direction in such a way to satisfy the given constraint condition, maintain consistency, reduce the uncertainties, and guarantee robustness. A series of experiments was conducted to evaluate the control performance, in which a car Like robot was utilized to quit unwanted safety problem. As the results, the robot was keeping very well a given lane with arbitrary shape at moderate speed.

  • PDF

PSD322-Axle형 지게차 자동변속기의 변속제어 (Shifting Control Method for Automatic Transmission of PSD-Axle Forklift)

  • 권순기;최시영;권기령;한승우
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.565-575
    • /
    • 2009
  • A forklift (also called a lift truck) is a powered industrial truck that is used to lift and transport materials. It has become an indispensable piece of equipment in manufacturing and warehousing operations. The modem forklift is equipped with automatic transmission to meet the requirement of loading and easy operation of the vehicle. This paper proposes the design of TECU(Transmission Electronic Control Unit) which is applied to PSD322-Axle transmission. Garofalo's control technique is generally used to the automatic transmission. We consider the work quality and market requirement that does not want to control engine throttle. This paper proposes new controller system which guarantees efficient speed changes with simple system. This new system does not control the engine throttle spontaneously. But it has the load of engine and vehicle as a maximum disturbance. The scope of the disturbance is limited to the stoll area of the torque converter. This paper proposes a ideal control commander that converges relative velocity of the input and ouput of a clutch into a zero. We design linear controller to execute the idea control commander. We applied the control algorithm to the forklift of PSD322-Axle type and the performance of this controller was verified.

  • PDF

퍼지 추론을 이용한 자동차 변속패턴 보정 알고리즘 개발 (Compensation Algorithm for Automobile Shift Pattern using Fuzzy Reasoning)

  • 길성홍;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.32-48
    • /
    • 1994
  • This paper proposes the compensation algorithm of conventional shift pattern using fuzzy reasoning in automatic transmission vehicles. Recently, automatic transimssion vehicles are continually increasing because of theire ease to drive. Also users require the high performance which includes the smooth shift quality and shift scheduling that matches driver;s intentions. So the shift scheduling has been inproved significantly through the application of electronic control. But, in spite of this development, vehicles using conventional shift pattern are sometimes in discord with driver's intention on roads. In this paper, the paper, the proposed compensation algorithm makes a automatic transmission vehicle be able to select an optimal gear shifting time and position using fuzzy reasoning and make a vehicle driver feel confortable even when the vehicle runs on roads which is extremely changed. Therefore, a vehicle driver can expect to reduce the nimber of unnecessary gear shifting and expect the fuel efficiency high. To show usefulness of the proposed method, some simulation are made to compared with conventional gear shifting. Paper prosposes the compensation mehtod of conventional shift pattern using fuzzy reasoning for the purpose that a vehicle can select an optimal gerar shifting time and position in automatic vehicle. Though the conventional shift pattern has no pliability, vehicle driver can feel comfortable and can reduce the number of unnecessary gear shifting using the proposed method on variable road condition. Therefore, it can be expected the fuel efficiency.

  • PDF

IVHS의 AVCS 기술의 국내외 개발동향 (The Development Trend of AVCS Technology in IVHS)

  • 홍순철;이장희;정용일
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.141-149
    • /
    • 1994
  • Recently, IVHS technology attracted public attention according as national IVHS project was initiated by SOC. In advanced countries, specially in USA, Europe, and Japan. IVHS technology was already studied for over ten years as national strategic project. In this paper we describe the concept and development trend of AVCS which is a part of IVHS technology. The important contents in AVCS are automatic collision warning and avoidance system, automatic intelligent cruise control system, automatic vehicle platoon control system, automatic lateral control system, etc.

  • PDF

차량위치추적 시스템을 위한 다중 기준국 Inverted DGPS 시스템 (Multi-Reference Inverted DGPS System for Automatic Vehicle Location System)

  • 홍진석;한승재;지규인;이영재;이장규;최홍석
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.79-87
    • /
    • 1999
  • For its simplicity and cost effectiveness in implementation, the Inverted DGPS is well suited for some specific applications like automatic vehicle location systems, where the monitoring station needs accurate position of the vehicles in the street. In the Inverted DGPS, the user sends its GPS position and associated satellite informations to the reference station, and the corrections are made at the reference station to get differentially corrected user position. A fundamental requirement in IDGPS is that the user and the reference station must use the same satellites when the corrections are made. But in practice, it is not often satisfied. Inverted DGPS is also suffered from performance degradation as the baseline become large like DGPS. IDGPS system using multi-reference station can resolve this problem. In this paper a simple multi-reference IDGPS algorithm is proposed and some experiments and analysis are peformed. Experiment results show that IDGPS can achieve the positioning performance as accurate as the DGPS can provide.

  • PDF

Robust Automatic Parking without Odometry using an Evolutionary Fuzzy Logic Controller

  • Ryu, Young-Woo;Oh, Se-Young;Kim, Sam-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.434-443
    • /
    • 2008
  • This paper develops a novel automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering rate for the output. It localizes the vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it automatically learns an optimal fuzzy if-then rule set from the training data, using an evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer mobile robot which emulates the real vehicle.