• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.037 seconds

An Accuracy Evaluation of Algorithm for Shoreline Change by using RTK-GPS (RTK-GPS를 이용한 해안선 변화 자동추출 알고리즘의 정확도 평가)

  • Lee, Jae One;Kim, Yong Suk;Lee, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.81-88
    • /
    • 2012
  • This present research was carried out by dividing two parts; field surveying and data processing, in order to analyze changed patterns of a shoreline. Firstly, the shoreline information measured by the precise GPS positioning during long duration was collected. Secondly, the algorithm for detecting an auto boundary with regards to the changed shoreline with multi-image data was developed. Then, a comparative research was conducted. Haeundae beach which is one of the most famous ones in Korea was selected as a test site. RTK-GPS surveying had been performed overall eight times from September 2005 to September 2009. The filed test by aerial Lidar was conducted twice on December 2006 and March 2009 respectively. As a result estimated from both sensors, there is a slight difference. The average length of shoreline analyzed by RTK-GPS is approximately 1,364.6 m, while one from aerial Lidar is about 1,402.5 m. In this investigation, the specific algorithm for detecting the shoreline detection was developed by Visual C++ MFC (Microsoft Foundation Class). The analysis result estimated by aerial photo and satellite image was 1,391.0 m. The level of reliability was 98.1% for auto boundary detection when it compared with real surveying data.

Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm (점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상)

  • Chang, Jeong-Ho;Lee, Jong-Woo;Eom, Jae-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1045-1055
    • /
    • 2007
  • Latent topic models are statistical models which automatically captures salient patterns or correlation among features underlying a data collection in a probabilistic way. They are gaining an increased popularity as an effective tool in the application of automatic semantic feature extraction from text corpus, multimedia data analysis including image data, and bioinformatics. Among the important issues for the effectiveness in the application of latent topic models to the massive data set is the efficient learning of the model. The paper proposes an accelerated learning technique for PLSA model, one of the popular latent topic models, by an incremental EM algorithm instead of conventional EM algorithm. The incremental EM algorithm can be characterized by the employment of a series of partial E-steps that are performed on the corresponding subsets of the entire data collection, unlike in the conventional EM algorithm where one batch E-step is done for the whole data set. By the replacement of a single batch E-M step with a series of partial E-steps and M-steps, the inference result for the previous data subset can be directly reflected to the next inference process, which can enhance the learning speed for the entire data set. The algorithm is advantageous also in that it is guaranteed to converge to a local maximum solution and can be easily implemented just with slight modification of the existing algorithm based on the conventional EM. We present the basic application of the incremental EM algorithm to the learning of PLSA and empirically evaluate the acceleration performance with several possible data partitioning methods for the practical application. The experimental results on a real-world news data set show that the proposed approach can accomplish a meaningful enhancement of the convergence rate in the learning of latent topic model. Additionally, we present an interesting result which supports a possible synergistic effect of the combination of incremental EM algorithm with parallel computing.

Development of BIM-based Work Process Model in Construction Phase (시공단계의 BIM기반 건설사업관리 업무절차 모델 개발)

  • Yu, Yongsin;Jeong, Jiseong;Jung, Insu;Yoon, Hobin;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.133-143
    • /
    • 2013
  • BIM can be utilized variously in construction management(CM) in the respect that it helps to manage comprehensively the construction information and make reliable decisions, but the adoption of BIM is insufficient in the CM area. The purpose of this study is to develop work process models and their guides in order to utilize BIM effectively in CM work at construction stage. This study defined BIM functions as 'BIM converting design', 'Model review', 'Data extraction', 'Automatic estimate', '4D simulation', 'Drawing creation', 'Engineering sector linkage analysis' through literature search, and generated CM works applicable to BIM by analyzing the CM work and process. This study developed BIM-based CM work process models by reconstructing the existing work process in connection with BIM function through an analysis on the relationship between BIM function and CM work, and reconstructing the role of each project participants. In order to improve the usefulness of the developed models, guides that described the BIM works of project participants were prepared through interviews and case studies. To validate the utilization of the models, a comparative analysis on the BIM process of precedent studies was also made and a survey was conducted on experts. This study can contribute to increasing the utilization of BIM in the CM area and can be helpful for CM companies to develop an in-house BIM guide. In the future, it will be necessary to make an assessment on the models from a business perspective through case applications and constantly update BIM-based CM work process model in consideration of the expansion of CM work due to the application of BIM.

Corpus-based Korean Text-to-speech Conversion System (콜퍼스에 기반한 한국어 문장/음성변환 시스템)

  • Kim, Sang-hun; Park, Jun;Lee, Young-jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.24-33
    • /
    • 2001
  • this paper describes a baseline for an implementation of a corpus-based Korean TTS system. The conventional TTS systems using small-sized speech still generate machine-like synthetic speech. To overcome this problem we introduce the corpus-based TTS system which enables to generate natural synthetic speech without prosodic modifications. The corpus should be composed of a natural prosody of source speech and multiple instances of synthesis units. To make a phone level synthesis unit, we train a speech recognizer with the target speech, and then perform an automatic phoneme segmentation. We also detect the fine pitch period using Laryngo graph signals, which is used for prosodic feature extraction. For break strength allocation, 4 levels of break indices are decided as pause length and also attached to phones to reflect prosodic variations in phrase boundaries. To predict the break strength on texts, we utilize the statistical information of POS (Part-of-Speech) sequences. The best triphone sequences are selected by Viterbi search considering the minimization of accumulative Euclidean distance of concatenating distortion. To get high quality synthesis speech applicable to commercial purpose, we introduce a domain specific database. By adding domain specific database to general domain database, we can greatly improve the quality of synthetic speech on specific domain. From the subjective evaluation, the new Korean corpus-based TTS system shows better naturalness than the conventional demisyllable-based one.

  • PDF

Automated Algorithm for Super Resolution(SR) using Satellite Images (위성영상을 이용한 Super Resolution(SR)을 위한 자동화 알고리즘)

  • Lee, S-Ra-El;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

A Case Study on Metadata Extractionfor Records Management Using ChatGPT (챗GPT를 활용한 기록관리 메타데이터 추출 사례연구)

  • Minji Kim;Sunghee Kang;Hae-young Rieh
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.2
    • /
    • pp.89-112
    • /
    • 2024
  • Metadata is a crucial component of record management, playing a vital role in properly managing and understanding the record. In cases where automatic metadata assignment is not feasible, manual input by records professionals becomes necessary. This study aims to alleviate the challenges associated with manual entry by proposing a method that harnesses ChatGPT technology for extracting records management metadata elements. To employ ChatGPT technology, a Python program utilizing the LangChain library was developed. This program was designed to analyze PDF documents and extract metadata from records through questions, both with a locally installed instance of ChatGPT and the ChatGPT online service. Multiple PDF documents were subjected to this process to test the effectiveness of metadata extraction. The results revealed that while using LangChain with ChatGPT-3.5 turbo provided a secure environment, it exhibited some limitations in accurately retrieving metadata elements. Conversely, the ChatGPT-4 online service yielded relatively accurate results despite being unable to handle sensitive documents for security reasons. This exploration underscores the potential of utilizing ChatGPT technology to extract metadata in records management. With advancements in ChatGPT-related technologies, safer and more accurate results are expected to be achieved. Leveraging these advantages can significantly enhance the efficiency and productivity of tasks associated with managing records and metadata in archives.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF