• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.032 seconds

Automatic Building Extraction Using LIDAR Data

  • Cho, Woo-Sug;Jwa, Yoon-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1137-1139
    • /
    • 2003
  • This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.

  • PDF

A Keyphrase Extraction Model for Each Conference or Journal (학술대회 및 저널별 기술 핵심구 추출 모델)

  • Jeong, Hyun Ji;Jang, Gwangseon;Kim, Tae Hyun;Sin, Donggu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.81-83
    • /
    • 2022
  • Understanding research trends is necessary to select research topics and explore related works. Most researchers search representative keywords of interesting domains or technologies to understand research trends. However some conferences in artificial intelligence or data mining fields recently publish hundreds to thousands of papers for each year. It makes difficult for researchers to understand research trend of interesting domains. In our paper, we propose an automatic technology keyphrase extraction method to support researcher to understand research trend for each conference or journal. Keyphrase extraction that extracts important terms or phrases from a text, is a fundamental technology for a natural language processing such as summarization or searching, etc. Previous keyphrase extraction technologies based on pretrained language model extract keyphrases from long texts so performances are degraded in short texts like titles of papers. In this paper, we propose a techonolgy keyphrase extraction model that is robust in short text and considers the importance of the word.

  • PDF

Tobacco Retail License Recognition Based on Dual Attention Mechanism

  • Shan, Yuxiang;Ren, Qin;Wang, Cheng;Wang, Xiuhui
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.480-488
    • /
    • 2022
  • Images of tobacco retail licenses have complex unstructured characteristics, which is an urgent technical problem in the robot process automation of tobacco marketing. In this paper, a novel recognition approach using a double attention mechanism is presented to realize the automatic recognition and information extraction from such images. First, we utilized a DenseNet network to extract the license information from the input tobacco retail license data. Second, bi-directional long short-term memory was used for coding and decoding using a continuous decoder integrating dual attention to realize the recognition and information extraction of tobacco retail license images without segmentation. Finally, several performance experiments were conducted using a largescale dataset of tobacco retail licenses. The experimental results show that the proposed approach achieves a correction accuracy of 98.36% on the ZY-LQ dataset, outperforming most existing methods.

Salient Region Extraction based on Global Contrast Enhancement and Saliency Cut for Image Information Recognition of the Visually Impaired

  • Yoon, Hongchan;Kim, Baek-Hyun;Mukhriddin, Mukhiddinov;Cho, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2287-2312
    • /
    • 2018
  • Extracting key visual information from images containing natural scene is a challenging task and an important step for the visually impaired to recognize information based on tactile graphics. In this study, a novel method is proposed for extracting salient regions based on global contrast enhancement and saliency cuts in order to improve the process of recognizing images for the visually impaired. To accomplish this, an image enhancement technique is applied to natural scene images, and a saliency map is acquired to measure the color contrast of homogeneous regions against other areas of the image. The saliency maps also help automatic salient region extraction, referred to as saliency cuts, and assist in obtaining a binary mask of high quality. Finally, outer boundaries and inner edges are detected in images with natural scene to identify edges that are visually significant. Experimental results indicate that the method we propose in this paper extracts salient objects effectively and achieves remarkable performance compared to conventional methods. Our method offers benefits in extracting salient objects and generating simple but important edges from images containing natural scene and for providing information to the visually impaired.

Effective Automatic Foreground Motion Detection Using the Statistic Information of Background

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.121-128
    • /
    • 2015
  • In this paper, we proposed and implemented the effective automatic foreground motion detection algorithm that detect the foreground motion by analyzing the digital video data that captured by the network camera. We classified the background as moving background, fixed background and normal background based on the standard deviation of background and used it to detect the foreground motion. According to the result of experiment, our algorithm decreased the fault detection of the moving background and increased the accuracy of the foreground motion detection. Also it could extract foreground more exactly by using the statistic information of background in the phase of our foreground extraction.

An Experimental Approach of Keyword Extraction in Korean-Chinese Text (국한문 혼용 텍스트 색인어 추출기법 연구 『시사총보』를 중심으로)

  • Jeong, Yoo Kyung;Ban, Jae-yu
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.7-19
    • /
    • 2019
  • The aim of this study is to develop a technique for keyword extraction in Korean-Chinese text in the modern period. We considered a Korean morphological analyzer and a particle in classical Chinese as a possible method for this study. We applied our method to the journal "Sisachongbo," employing proper-noun dictionaries and a list of stop words to extract index terms. The results show that our system achieved better performance than a Chinese morphological analyzer in terms of recall and precision. This study is the first research to develop an automatic indexing system in the traditional Korean-Chinese mixed text.

A Region Based Approach to Surface Segmentation using LIDAR Data and Images

  • Moon, Ji-Young;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.575-583
    • /
    • 2007
  • Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches. Many previous segmentation methods have been developed to extract planar patches from LIDAR data for building extraction. However, most of them were not fully satisfactory for more general applications in terms of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to perform surface segmentation by combining not only LIDAR data but also images. A region-based method is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based on both the coordinates of the points and the corresponding intensity values computed from the images. This method has been applied to urban data and the segmentation results are compared with the reference data acquired by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable intermediate process toward automatic extraction of 3D model of the real world.

Footprint extraction of urban buildings with LIDAR data

  • Kanniah, Kasturi Devi;Gunaratnam, Kasturi;Mohd, Mohd Ibrahim Seeni
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.113-119
    • /
    • 2003
  • Building information is extremely important for many applications within the urban environment. Sufficient techniques and user-friendly tools for information extraction from remotely sensed imagery are urgently needed. This paper presents an automatic and manual approach for extracting footprints of buildings in urban areas from airborne Light Detection and Ranging (LIDAR) data. First a digital surface model (DSM) was generated from the LIDAR point data. Then, objects higher than the ground surface are extracted using the generated DSM. Based on general knowledge on the study area and field visits, buildings were separated from other objects. The automatic technique for extracting the building footprints was based on different window sizes and different values of image add backs, while the manual technique was based on image segmentation. A comparison was then made to see how precise the two techniques are in detecting and extracting building footprints. Finally, the results were compared with manually digitized building reference data to conduct an accuracy assessment and the result shows that LIDAR data provide a better shape characterization of each buildings.

  • PDF

Feature extraction for part recognition system of FMC (FMC의 부품인식을 위한 형상 정보 추출에 관한 연구)

  • 김의석;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.892-895
    • /
    • 1992
  • This paper presents a methodology for automatic feature extraction used in a vision system of FMC (flexible Manufacturing Cell). To implement a robot vision system, it is important to make a feature database for object recognition, location, and orientation. For industrial applications, it is necessary to extract feature information from CAD database since the detail information about an object is described in CAD data. Generally, CAD description is three dimensional information but single image data from camera is two dimensional information. Because of this dimensiional difference, many problems arise. Our primary concern in this study is to convert three dimensional data into two dimensional data and to extract some features from them and store them into the feature database. Secondary concern is to construct feature selecting system that can be used for part recognition in a given set of objects.

  • PDF