• Title/Summary/Keyword: Automatic Generation

Search Result 1,316, Processing Time 0.027 seconds

Artificial Intelligence-Based Video Content Generation (인공지능 기반 영상 콘텐츠 생성 기술 동향)

  • Son, J.W.;Han, M.H.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • This study introduces artificial intelligence (AI) techniques for video generation. For an effective illustration, techniques for video generation are classified as either semi-automatic or automatic. First, we discuss some recent achievements in semi-automatic video generation, and explain which types of AI techniques can be applied to produce films and improve film quality. Additionally, we provide an example of video content that has been generated by using AI techniques. Then, two automatic video-generation techniques are introduced with technical details. As there is currently no feasible automatic video-generation technique that can generate commercial videos, in this study, we explain their technical details, and suggest the future direction for researchers. Finally, we discuss several considerations for more practical automatic video-generation techniques.

Automatic Extraction of Metadata Information for Library Collections

  • Yang, Gi-Chul;Park, Jeong-Ran
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.117-122
    • /
    • 2018
  • As evidenced through rapidly growing digital repositories and web resources, automatic metadata generation is becoming ever more critical, especially considering the costly and complex operation of manual metadata creation. Also, automatic metadata generation is apt to consistent metadata application. In this sense, metadata quality and interoperability can be enhanced by utilizing a mechanism for automatic metadata generation. In this article, a mechanism of automatic metadata extraction called ExMETA is introduced in order to alleviate issues dealing with inconsistent metadata application and semantic interoperability across ever-growing digital collections. Conceptual graph, one of formal languages that represent the meanings of natural language sentences, is utilized for ExMETA as a mediation mechanism that enhances the metadata quality by disambiguating semantic ambiguities caused by isolation of a metadata element and its corresponding definition from the relevant context. Hence, automatic metadata generation by using ExMETA can be a good way of enhancing metadata quality and semantic interoperability.

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (II): Development of the Automatic System Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (II): 시스템 자동결합 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the automatic system generation algorithm based on the element combination algorithm discussed in the first part of this paper for designing an arbitrary type of the automatic transmissions is proposed. The powertrain design software using these algorithms is developed. This automotive powertrain design software with user-friendly graphic user interface has two main modules. The first module, the automatic power flow generation module, is already discussed in the previous paper. The second module dealing with the automatic system generation algorithm is discussed in this paper. The power-flow simulation software fur the arbitrary type of powertrain is then developed. The simulation and experimental results of the vehicle equipped with two planetary gear type automatic transmission are compared to validate the proposed algorithms and developed software. The simulation results demonstrate the good agreement with the experimental results.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (I): Development of the Automatic Powerflow Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (I): 동력흐름 자동생성 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, the element combination algorithm for designing an arbitrary type of the automatic transmissions is proposed. The powertrain simulation software using this algorithm is then developed. The deliveries of the angular velocities and torques are only considered for the motion characteristics of the automatic transmissions. The effects of the vibration and noise are not considered. The automatic transmission is defined by the basic elements, i.e., planetary gear set, clutch, brake, shaft, general gear, and inertia. The transmission system is defined by the combination of these elements. The element combination matrices automatically generate the equations of motion for each shift. The self error-correcting algorithm is also developed to verify the element combination algorithm. This automotive powertrain simulation/design software with user-friendly graphic user interface has two main modules. The first module, the automatic powerflow generation module, mainly consists of the automatic powerflow and component generation algorithms. This paper covers the theory and application for the first module. The second module deals with the automatic system generation algorithm and will be discussed in the second paper.

Techniques of Automatic Finite Element Mesh Generation on Surface Primitives (원시곡면 위의 유한요소망 자동생성 기법)

  • 이재영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.189-202
    • /
    • 1996
  • Complex geometric shapes can be defined simply and efficiently by combining and operating various surface primitives. These primitives and their intersection curves are used in finite element mesh generation to form an easy and intuitive procedure for finite element modelling of curved surfaces. This paper proposes techniques of automatic mesh generation on surface primitives with arbitrarily shaped boundaries and control curves, which may be created by surface to surface intersection. A method of automatic mesh generation on plane, which was previously developed by the author, has been modified for application to the surface mesh generation. Owing to the mesh generation-wise differences between planes and surfaces, the surfaces should be transformed into conceptual plane so that the modified plane mesh generation method can be applied. Surface development, mapping and mesh reconstruction are the key techniques suggested in this paper. The selection of the technique to apply can be determined automatically on the basis of the developability, existence of singularity and other characteristics of the surfaces on which the mesh is to be generated. The suggested techniques were implemented into parts of mesh generation functions of the finite element software, MacTran. Their validity and practicality were manifested by the actual use of this software.

  • PDF

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Automatic Mesh Generation Method in Shallow Water Area considering Water Depth (수심을 고려한 천해역에서의 자동요소 생성법)

  • 김남형;양정필;박상길
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.97-105
    • /
    • 2000
  • This paper presents an automatic mesh generation considering water depth, which is based on the depth interpolation. The key feature of this method is that the position of a mesh on any depth in the shallow water area can be generated. The Examples are carried out, and the results are shown to be good. This method is shown to be a useful and powerful tool for the flow calculation for the seabed topography.

  • PDF