• 제목/요약/키워드: Automatic Annotation System

검색결과 36건 처리시간 0.029초

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

자동 주석 갱신 및 다중 분할 칼라 히스토그램 기법을 이용한 멀티미디에 데이터베이스 시스템 (A Multimedia Database System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 안재명;오해석
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.701-708
    • /
    • 2004
  • 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 특징기반 검색의 질의 이미지가 되고 인덱싱 에이전트는 제안하는 다중 분할 칼라 히스토그램 기법을 통해 질의 이미지와 데이터베이스의 키 프레임들을 비교한 후 가장 유사한 키 프레임 이미지를 검색하여 사용자에게 디스플레이 한다. 제안하여 구현된 시스템은 현저히 향상된 성능을 보였다.

Automatic Summarization of French Scientific Articles by a Discourse Annotation Method using the EXCOM System

  • Antoine, Blais
    • 한국언어정보학회지:언어와정보
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2009
  • Summarization is a complex cognitive task and its simulation is very difficult for machines. This paper presents an automatic summarization strategy that is based on a discourse categorization of the textual information. This categorization is carried out by the automatic identification of discourse markers in texts. We defend here the use of discourse methods in automatic summarization. Two evaluations of the summarization strategy are presented. The summaries produced by our strategy are evaluated with summaries produced by humans and other applications. These two evaluations display well the capacity of our application, based on EXCOM, to produce summaries comparable to the summaries of other applications.

  • PDF

Korean Semantic Annotation on the EXCOM Platform

  • Chai, Hyun-Zoo;Djioua, Brahim;Priol, Florence Le;Descles, Jean-Pierre
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.548-556
    • /
    • 2007
  • We present an automatic semantic annotation system for Korean on the EXCOM (EXploration COntextual for Multilingual) platform. The purpose of natural language processing is enabling computers to understand human language, so that they can perform more sophisticated tasks. Accordingly, current research concentrates more and more on extracting semantic information. The realization of semantic processing requires the widespread annotation of documents. However, compared to that of inflectional languages, the technology in agglutinative language processing such as Korean still has shortcomings. EXCOM identifies semantic information in Korean text using our new method, the Contextual Exploration Method. Our initial system properly annotates approximately 88% of standard Korean sentences, and this annotation rate holds across text domains.

  • PDF

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

물체인식 딥러닝 모델 구성을 위한 파이썬 기반의 Annotation 툴 개발 (Development of Python-based Annotation Tool Program for Constructing Object Recognition Deep-Learning Model)

  • 임송원;박구만
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.386-398
    • /
    • 2020
  • 본 논문에서는 물체인식 딥러닝 모델을 구성하는데 필요한 데이터 레이블링 과정을 하나의 프로그램에서 사용할 수 있는 Annotation 툴을 개발했다. 프로그램의 인터페이스는 파이썬의 기본 GUI 라이브러리를 활용하였으며, 실시간으로 데이터 수집이 가능한 크롤러 기능을 구성하였다. 기존의 물체인식 딥러닝 모델인 Retinanet을 활용하여, 자동으로 Annotation 정보를 제공하는 기능을 구현했다. 또한, 다양한 물체인식 네트워크의 레이블링 형식에 맞추어 학습할 수 있도록 Pascal-VOC, YOLO, Retinanet 등 제각기 다른 학습 데이터 레이블링 형식을 저장하도록 했다. 제안하는 방식을 통해 국산 차량 이미지 데이터셋을 구축했으며, 기존의 물체인식 딥러닝 네트워크인 Retinanet과 YOLO 등에 학습하고, 정확도를 측정했다. 차량이 진입하는 영상에서 실시간으로 차량의 모델을 구별하는 정확성은 약 94%의 정확도를 기록했다.

SVM 기계학습을 이용한 웹문서의 자동 의미 태깅 (Automatic semantic annotation of web documents by SVM machine learning)

  • 황운호;강신재
    • 한국산업정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.49-59
    • /
    • 2007
  • 본 논문은 시맨틱 웹의 실현을 위해서는 필수적인 작업인 웹문서의 의미를 자동으로 태깅할 수 있는 시스템에 관한 것이다. 웹상의 방대한 자원을 일일이 사람이 수작업으로 의미를 태깅한다는 것은 사실상 불가능하기 때문에 한국어 웹문서를 대상으로 대량의 학습 데이터를 수집하고 자연어처리 기법과 시소러스를 이용하여 특징을 추출한 후 SVM 기계학습을 통하여 개념분류기를 구축하였다. 한국어의 특징을 파악하여 의미 태깅에 필요한 특징 정보를 추출하기 위해서 형태소 분석과 구문 분석을 하였다. 추출된 특징정보는 가도카와 시소러스의 의미코드를 이용하여 학습벡터로 구성되는데, 이는 유사한 단어나 구를 하나의 개념코드로 매핑하여 시스템의 재현율을 높이는 역할을 하게 된다. 실험결과 자동 의미 태깅 분야에서 본 접근방법의 가능성을 확인할 수 있었다.

  • PDF

자동 주석 갱신 및 카테고라이징 기법을 이용한 의미기반 동영상 검색 시스템 (A Semantic-based Video Retrieval System using Design of Automatic Annotation Update and Categorizing)

  • 김정재;이창수;이종희;전문석
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권2호
    • /
    • pp.203-216
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터 베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다 또한. 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 설계한다.

  • PDF

자동 인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System Using the Automatic Indexing Agent)

  • 김삼근;이종희;윤선희;이근수;서정민
    • 한국멀티미디어학회논문지
    • /
    • 제9권1호
    • /
    • pp.127-137
    • /
    • 2006
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터 베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 자동 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.

  • PDF