• Title/Summary/Keyword: Automated Transport System

Search Result 114, Processing Time 0.023 seconds

Performance evaluation of double stack vehicle at container terminal (2단 적재차량의 컨테이너 이송능력 분석)

  • Ha Tae-Young;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.255-261
    • /
    • 2005
  • The purpose of this paper is to analyze transport ability of Automated Guided Vehicle(AGV) and Double Stack Vehicle(DSV) at Automated Container Terminal(ACT). Usually, the main difference of AGV and DSV is capacity of container that they can transport between apron and yard block at once. AGV can carry out two 20 feet or one 40 feet maritime containers, but DSV can carry out four 20 feet or two 40 feet maritime containers. Therefore, DSV may improve more efficiency of stevedoring system of container terminal. In this paper, a simulation model using a graphics simulation system is developed to compare the proposed DSV with the current AGV at automated container terminal. The paper includes examples, performance tests and a discussion of simulation results.

  • PDF

Simulation and Analysis for Small Rapid Transit System (소형궤도열차시스템 모의시험 및 분석)

  • Jeong, Rag-Gyo;Kim, Yeon-Soo;Cho, Bong-Kwan;Choi, Hyo-Jeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.748-754
    • /
    • 2006
  • Small Rapid Transit System(SRTS) will be defined fully automated urban transit system providing a rapid and personalized door to door transport service. Conventional forms of public transit require passengers to collect in groups until a large vehicle is scheduled to travel on predetermined routes. In contrast, SRTS offers personal transport with no waiting, and takes passengers non-stop to their chosen destination. This is a transport system which is as convenient as, or in congested environments more convenient than, the car, but with minimal environmental impact. Accordingly the foundation study of choice system size for development of SRTS

  • PDF

A Study on Assessment Items and Considerations for Development of KNCAP of Automated Driving System (자율주행자동차 KNCAP(자동차안전도평가) 도입 시 평가항목과 고려사항에 관한 연구)

  • Woo, Hyungu;Lee, Gwang Goo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.102-110
    • /
    • 2021
  • As an alternative to solving safety, environments, and aging problems, ADS (Automated driving system) in the global automotive market is actively being developed as a new growth industry. In time for the appearance of ADS, relevant regulations and assessment programs must also be developed. For example, safety standards for the Level 3 automated driving system were promulgated in December 2019 by the Ministry of Land, Infrastructure and Transport of Korean government. However, assessment programs such as KNCAP for autonomous functions of ADS have not yet been introduced in Korea as well as globally. The autonomous driving functions of ADS at Level 3 or higher must be capable to recognize, judge and respond to objects and events in a wide variety of complex situations. In this paper, we examined and studied the complex situations, considerations and assessment items that ADS must respond to in the interest of safety for passengers, pedestrians and other road users. We hope this paper will be helpful to develop an execution program in the future.

An Optimal Route Algorithm for Automated Vehicle in Monitoring Road Infrastructure (도로 인프라 모니터링을 위한 자율주행 차량 최적경로 알고리즘)

  • Kyuok Kim;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.265-275
    • /
    • 2023
  • The purpose of this paper is to devise an optimal route allocation algorithm for automated vehicle(AV) in monitoring quality of road infrastructure to support the road safety. The tasks of an AV in this paper include visiting node-links at least once during its operation and checking status of road infrastructure, and coming back to its depot.. In selecting optimal route, its priority goal is visiting the node-links with higher risks while reducing costs caused by operation. To deal with the problem, authors devised reward maximizing algorithm for AVs. To check its validity, the authors developed simple toy network that mimic node-link networks and assigned costs and rewards for each node-link. With the toy network, the reward maximizing algorithm worked well as it visited the node-link with higher risks earlier then chinese postman route algorithm (Eiselt, Gendreau, Laporte, 1995). For further research, the reward maximizing algorithm should be tested its validity in a more complex network that mimic the real-life.

A Dynamic OHT Routing Algorithm in Automated Material Handling Systems (자동화 물류시스템 내 차량 혼잡도를 고려한 무인운반차량의 동적 경로 결정 알고리즘)

  • Kang, Bonggwon;Kang, Byeong Min;Hong, Soondo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.40-48
    • /
    • 2022
  • An automated material handling system (AMHS) has been emerging as an important factor in the semiconductor wafer manufacturing industry. In general, an automated guided vehicle (AGV) in the Fab's AMHS travels hundreds of miles on guided paths to transport a lot through hundreds of operations. The AMHS aims to transfer wafers while ensuring a short delivery time and high operational reliability. Many linear and analytic approaches have evaluated and improved the performance of the AMHS under a deterministic environment. However, the analytic approaches cannot consider a non-linear, non-convex, and black-box performance measurement of the AMHS owing to the AMHS's complexity and uncertainty. Unexpected vehicle congestion increases the delivery time and deteriorates the Fab's production efficiency. In this study, we propose a Q-Learning based dynamic routing algorithm considering vehicle congestion to reduce the delivery time. The proposed algorithm captures time-variant vehicle traffic and decreases vehicle congestion. Through simulation experiments, we confirm that the proposed algorithm finds an efficient path for the vehicles compared to benchmark algorithms with a reduced mean and decreased standard deviation of the delivery time in the Fab's AMHS.

A study on Optical Element Pick-up Mechanism of Ultrasonic Transport System (초음파 이송 장치의 광소자 픽업 메커니즘에 관한 연구)

  • Jeong S.H.;Kim G.H.;Shin S.M.;Lee S.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.327-328
    • /
    • 2006
  • Recently, as the infocomindustry is developed, the semiconductor industry as well as the optical industry such as the optical communication and the optical instrument is developed rapidly. The transmission, storage and processing of information has been reaching an limit because amounts of information increase rapidly. The more quickly the optical communication is developed, the more sharply the demand of optical elements increase. The transport and inspection process is time consuming and the error rate is high, because this process are not automated in case of an optical lens. In this paper, the pick-up system that can hold optical elements and be transferred by the ultrasonic transport system is developed. The inspection system that distinguishes between the existence and the nonexistence of a defect is connected easily to pick-up system. The pick-up system separates the optical glass lens by results of the inspection. The automation program is developed by visual c++ programming.

  • PDF

New Conceptual Handling Systems in Container Terminals

  • Kim, Kap Hwan;Phan, Mai-Ha Thi;Woo, Youn Ju
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.299-309
    • /
    • 2012
  • This paper introduces some of the developments related to the handling equipment in container terminals and various new conceptual handling systems that have been proposed during the last several decades. The basic ideas behind the previous equipment improvements are analyzed to identify future directions that can be used for devising new handling systems. The handling systems in the container terminals include a quayside handling system, transport system, and yard system. In response to the deployment of mega-sized vessels for container transportation systems, productivity improvement has become one of the most urgent issues in the container terminals. This paper analyzes the previous improvements made for achieving higher productivity in the three subsystems of container handling. Some conceptual handling systems are introduced including the linear motor conveyance system (LMCS), automated storage and retrieval systems (AR/RS), overhead grid rail (GRAIL), SPEEDPORT, SuperDock, the automated container system by ZPMC (ACS-ZPMC), and AUTOCON.

Suggestion of Evaluation Elements Based on ODD for Automated Vehicles Safety Verification : Case of K-City (자율주행자동차 안전성 검증을 위한 ODD 기반 평가요소 제시 : K-City를 중심으로)

  • Kim, Inyoung;Ko, Hangeom;Yun, Jae-Woong;Lee, Yoseph;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.197-217
    • /
    • 2022
  • As automated vehicle(AV) accidents continue to occur, the importance of safety verification to ensure the safety and reliability of automated driving system(ADS) is being emphasized. In order to encure safety and reliability, it is necessary to define an operational design domain(ODD) of the ADS and verify the safety of the ADS while evaluating its ability to respond in situations outside of the ODD. To this, international associations such as SAE, BSI, NHTSA, ISO, etc. stipulate ODD standards. However, in Korea, there is no standard for the ODD, so automated vehicles's ODD expression method and safety verification and evaluation are not properly conducted. Therefore, this study analyzed overseas ODD standards and selected suitable ODD for safety verification and evaluation, and presented evaluation elements for ADS safety verification and evaluation. In particular, evaluation elements were selected by analyzing the evaluation environment of the automated driving experimental city (K-City) that supports the development of ADS technology.

A Simulation Study on the Deadlock of a Rail-Based Container Transport System (레일기반 컨테이너 이송 시스템의 교착에 관한 시뮬레이션 연구)

  • Seo, Jeong-Hoon;Yi, Sang-Hyuk;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this study, the focus is on the issue of whether a container terminal is facing the limitation of its productivity for serving mega-vessels with numerous containers. In order to enhance the terminal operations, a new conceptual design of the container handling system have been proposed. This research focuses on the rail-based container transport system and its operations. This system consists of rail-based shuttle cranes and rail-based transporters called flatcars. The deadlock problem for managing automated transporters in container terminals has been an important issue for a long measurement of time. Therefore, this study defines the deadlock situation and proposes its avoidance rules at the rail-based container transport system, which is required to handle numerous container throughput operations. The deadlock in the rail-based container transport system is classified into two parts: deadlock between cranes and flatcars; deadlock between flatcars. We developed the simulation model for use with characterizing and analyzing the rail-based container transport system. By running the simulation, we derived possible deadlock situations, and propose the several deadlock avoidance algorithms to provide results for these identified situations. In the simulation experiments, the performances of the deadlock avoidance algorithms are compared according to the frequency of deadlocks as noted in the simulations.

A Road Environment Analysis for the Introduction of Connected and Automated Driving-based Mobility Services from an Operational Design Domain Perspective (자율주행기반 모빌리티 서비스 도입을 위한 운행설계영역 관점의 도로환경 분석)

  • Bo-Ram, WOO;Ah-Reum, KIM;Yong-Jun, AHN;Se-Hyun, TAK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.107-118
    • /
    • 2022
  • As connected and automated driving(CAD) technology is entering its commercialization stage, service platforms providing CAD-based mobility services have increased these days. However, CAD-baded mobility services with these platforms need more consideration for the demand for mobility services when determining target areas for CAD-based mobility services because current CAB-based mobility design focus on driving performance and driving stability. For a more efficient design of CAD-based mobility services, we analyzed the applicability for the introduction of CAD-based mobility services in terms of driving difficulty of CAD and demand patterns of current non-CAD based-mobility services, e.g., taxi, demand-responsive transit(DRT), and special transportation systems(STS). In addition, for the spatial analysis of the applicability of the CAD-based mobility service, we propose the Index for Autonomous Driving Applicability (IADA) and analyze the characteristics of the spatial distribution of IADA from the network perspective. The analysis results show that the applicability of CAD-based mobility services depends more on the demand patterns than the driving difficulty of CAV. In particular, the results show that the concentration pattern of demand in a specific road link is more important than the size of demand. As a result, STS service shows higher applicability compared to other mobility services, even though the size of demand for this mobility service is relatively small.